Ethane derived plastics

Ethane is a chemical compound in the form of a colorless, odorless gas .

Its chief use is as feedstock for ethylene production.
Ethane is treated (cracked) to make ethylene.

Ethylene is used to make.

Polyethylene (Polythene)

Ethylene is one of the raw materials used to make polyethylene (abbreviated PE) (IUPAC name polyethene or poly(methylene))This is the most common plastic.The annual global production of polythene is approximately 80 million tonnes.

    • High-density polyethylene (HDPE)
    • Cross-linked polyethylene (PEX or XLPE)
    • Medium-density polyethylene (MDPE)
    • Linear low-density polyethylene (LLDPE)
    • Low-density polyethylene (LDPE)
    • Very-low-density polyethylene (VLDPE)

PVC polyvinyl chloride

Ethylene and chlorine are raw materials for PVC. Ethylene is chlorinated then cracked to make the  vinyl chloride monomer (VCM). Nearly all VCM is used to make polyvinyl chloride

polystyrene (PS)

Ethylene is  reacted with benzene to make ethylbenzene which is further processed into styrene. The main outlets for styrene are polymers and synthetic rubbers such as polystyrene,acrylonitrile-butadiene-styrene (ABS) and styrene butadiene rubber (SBR).

Other Plastics

Ethylene can be oxidised to create ethylene oxide This mostly  used to make ethylene glycol, from which polyester fibres for textile applications, PET resins for bottles and polyester film are made.

Recycling & Biodegradability

These plastics do not biodegrade.

They can be recycled.

Other Uses

ethylene oxide is a poison gas. It is highly flammable and explosive.

It can be used to make weapons

The gas leaves no residue on items it contacts, so can be used  instead of  steam in the sterilization of heat-sensitive tools and equipment, such as disposable plastic syringes.

Other ethylene derivitives are  found in in shampoo, kitchen cleaners, personal care products, etc

A few statistics

Global ethylene production was 107 million tonnes in 2005,[4] 109 million tonnes in 2006.[14] NNFCC Renewable Chemicals Factsheet: Ethanol, 138 million tonnes in 2010 and 141 million tonnes in 2011.[15] By 2010 ethylene was produced by at least 117 companies in 55 countries.[16] To meet the ever increasing demand for ethylene, sharp increases in production facilities are added globally, particularly in the Mideast and in China.[16]

In Abu Dhabi, the Borouge III ethane cracker which will produce 1.5m tonne/year of ethylene is expected to start up 2014.

In Mexico Braskem and Grupo Idesa’s $2.5bn 1m tonne/year ethylene XXI project  is expected to start up in 2015.

Useful Links

Polyethylene (Polythene)

PVC polyvinyl chloride

polystyrene (PS)

PET resins

Wikkipedia  and again

Icis.com market data

Other Plastic Info

Find out about other types of plastic here

Don’t know your crack from you cracking – try this introduction to plastic

 

 

post

Polyethylene / Polythene

  • is the most common plastic.
  • the annual global production of polythene is approximately 80 million tonnes.
  • it is an ethane derived plastic.

Ethane isone of the byproducts of oil refining.
It can be isolated from natural gas,
It can be derived from plants.but most is made from petroleum or natural gas.

Ethene is one of the raw materials used to make polyethylene (abbreviated PE) (IUPAC name polyethene or poly(methylene)

Types of polythene

  • High-density polyethylene (HDPE)
  • Cross-linked polyethylene (PEX or XLPE)
  • Medium-density polyethylene (MDPE)
  • Linear low-density polyethylene (LLDPE)
  • Low-density polyethylene (LDPE)
  • Very-low-density polyethylene (VLDPE)

High-density polyethylene  HDPE Plastic code 2

Used to make supermarket type carrier bags, chemical drums, jerricans, carboys, toys, picnic ware, household and kitchenware, cable insulation, plastic milk cartons, juice bottles, shampoo bottles, and liquid detergent containers.

It is tough and can withstand exposure to sunlight and extremes of temperature.

Products made of HDPE are reusable.

Recycling

HDPE is the most commonly recycled plastic and is a relatively simple and cost-effective process to recycle HDPE plastic for secondary use.

Polythene bags can be recycled through the supermarket carrier bag recycling schemes. Sainsburys even print this fact on their packaging – I saw it on their grapes the other day.

If you don’t live near a supermarket (!) with a recycling scheme, then you can send the bags to this company who run a recycling scheme.

New technology allows HDPE to be recycled into new milk bottles.

LDPE (Low density polyethylene) plastic code 4

used to make soft clear bags for packing of vegetables some bread and frozen food bags, trash cans, and garbage can liners. Also used to make toys and clothes, dispensing bottles, wash bottles, tubing, molded laboratory equipment and corrosion-resistant work surfaces.

Parts that need to be weldable and machinable, parts that require flexibility, computer components, such as hard drives, screen cards and disk-drives are all made from LDPE.

It is considered less toxic than other plastics.

It is not commonly recycled yet but recycling possibilities are ever increasing.

Does Not Biodegrade…… or maybe it does

Polyethylene (PE) has been considered nonbiodegradable for decades. Although the biodegradation of PE by bacterial cultures has been occasionally described, valid evidence of PE biodegradation has remained limited in the literature. We found that waxworms, or Indian mealmoths (the larvae of Plodia interpunctella), were capable of chewing and eating PE films.

post

Rubber

There are two major categories of rubber; natural and synthetic. The most popular compounds are;

Natural Rubber
Vulcanised Rubber
Synthetic

History

Thousands of years BC Indians living in Central and South America were using latex to makewaterproof clothes and shoes using latex from rubber trees.

It was unknown in Europe until 1731when French explorer Charles Marie de La Condamine sent back samples of rubber to Europe. It was put to a variety of uses In 1770 Joseph Priestley found he could use pieces of rubber to erase pencil marks.

Others used it to waterproof cloth a series of discoveries that eventually led to Charles Macintosh inventing and patenting the rubberized, waterproof coat or macintosh. But it wasnt until 1839 when American inventor Charles Goodyear discovered how to vulcanize rubber that it really came into its own.

Natural Rubber

also called Latex or Para

Natural rubber is made from latex
Latex is the white liquid that oozes from certain plants when you cut into them.There are around 200 plants in the world that produce latex including dandilions.
99 percent of natural rubber comes from a tree called Hevea brasiliensis, or the rubber tree.

  • Though it’s sometimes mistaken as the sap of the Hevea tree, latex actuality runs through ducts in a layer just outside the cambium below the tree’s bark.
  • The rubber tree originates from South America.
  • 90% of all natural rubber comes from these trees grown in rubber plantations mainly found in Indonesia, the Malay Peninsula and Sri Lanka.
  • This type of rubber is often called Para rubber.

However by itself, unprocessed natural rubber is not all that useful. It tends to be brittle when cold and smelly and sticky when it warms up.

So it is combined with a range of addatives to give it added strength and flexibility.

The tough rubber used for tyres and such like has been further processed or vulcanised.

Vulcanised Rubber

Latex is filtered, washed, and reacted with acid to make the particles of rubber stick together.
Mastication machines “chew up” raw rubber using mechanical rollers and presses to make it softer, easier to work, and more sticky.
Addatives chemical ingredients are mixed in to improve its properties (for example, to make it more hardwearing).
Next, the rubber is squashed into shape by rollers (a process called calendering) or squeezed through specially shaped holes to make hollow tubes (a process known as extrusion).

Finally, the rubber is vulcanized (cooked): sulfur is added and the rubber is heated to about 140°C (280°F).

Biodegradable?

Latex when made from rubber trees a natural sounds like it should be biodegradable. Which has led to claims that that non-vulcanised products like latex condoms and other products  are.

This is hotly debated!
Most latex products contain addatives to make them (amongst other things) stronger. It all depends on wether they are biodegradable or not.

While many people say that simple rubber products people  do eventually decompose, (not proven),  it takes such a long time as to make any claims of biodegradability  misleading.Certainly the anti-balloon camp do not consider latex balloons to be biodegradable despite what the balloon industry say.

And yet this….

  • Very thin rubber products, such as balloons and condoms, will degrade naturally especially if they are subjected to natural sunlight. As is evident from the problems which are associated with sealing rings natural rubber is capable of being biodegraded. It should be possible to compost thin rubber articles
  • In a composting environment, biodegradation rates over 24 weeks were twice that compared to the fertilized treatment in soils. Degradation of natural rubber condoms in soil was slower compared to gloves with 42% of the initial weights remaining after 48 weeks. In contrast, the manufactured polyurethane condoms were hardly biodegradable.

Read more here

It is possible to buy natural latex foam rubber. For example
100% Natural Latex, Pure Comfort, Talalay rubber not foam, offering maximum comfort and luxury, available in Soft, Medium or Firm.read more here. I

and latex sheets like these

Both of the above have been described as biodegradable.

However vulcanised rubber generally is not. Though there are some suggestions that it may eventually biodegrade more research needs to be done.

Synthetic rubber on the other hand is not biodegradable.

Synthetic Rubber

Is produced primarily from petrochemicals by a chemical process known as polymerisation. You can read about polymers and polymerisation here.

Synthetic rubbers

Including
* SBR
* Neoprene
* Hypalon
* Nitrile
* Butyl
* EPDM
* Silicone
* Viton

Polychloroprene
Polyurethane

SBR – Styrene-butadiene or styrene-butadiene rubber (SBR) describe families of synthetic rubbers derived from styrene and butadiene (the version developed by Goodyear is called Neolite). These materials have good abrasion resistance and good aging stability when protected by additives.

Neoprene the brand name for polychloroprene often used for dive suits

Butyl rubber,
is gas-impermeable,
is commonly used for inner tubes.
Most modern chewing gum uses food-grade butyl rubber as the central gum base.
The raw materials for making butyl rubber are isobutylene and isoprene. These two components are polymerized at -100 °C

Poly(styrene-butadiene-styrene), or SBS, is a hard rubber that’s used for things like the soles of shoes, tire treads, and other places where durability is important. It’s a type of copolymer called a block copolymer. Its backbone chain is made up of three segments. The first is a long chain of polystyrene, the middle is a long chain of polybutadiene, and the last segment is another long section of polystyrene.

Silicone – read up here

High Quality Rubber Coated Textiles
Also known as technical coated textiles or rubber proofed fabrics, rubber coated textiles grant rubber characteristics to a wide variety of fabrics and materials.
We are able to coat fabrics with a wide variety of rubber compounds, some of the most popular compounds are;
* Natural Rubber
* SBR
* Neoprene
* Hypalon
* Nitrile
* Butyl
* EPDM
* Silicone
* Viton
* Polyurethane

More

Read more about the different types of plastic here

Why This Post Is ….

A little bit rubbish. You are reading a work in progress. Here’s how the blog is written and why we post half cocked.

 

And before you go…

If you have found the #plasticfree information useful, please consider supporting us. It all goes to financing the project (read more here) or

Recycling & Reusing Plastic – an introduction

This post is an introduction to recycling and reusing plastic non-biodegradable plastic at end of life. (also see Plastic Lifespan and Disposing Of Plastic ).

They include
Recycling
Transformation
Reuse

Recycling, Transforming & Reusing Plastic

Introduction.

What does recycling mean? Seems a simple enough question but I have seen the term recycled plastic used for everything from the mechanical melting down of waste plastic  to make a new products, to crafting lampshades out of milk bottles. Rather more controversially, it is also used to describe the process of burning plastic trash in waste incinerators and using the heat to produce electricity. The argument being that the plastic trash is recycled as electricity.

In the USA, Recycling is defined as “Using waste as material to manufacture a new product. Recycling involves altering the physical form of an object or material and making a new object from the altered material.”

Burning is called Transformation, which “refers to incineration, pyrolysis, distillation, or biological conversion other than composting.” They are very different things.” As quoted from Treehugger
You  can add to that
Reuse – when the original product is reused in a different way.
Recrafted or upcycling is the cottage industry version of the above.

N.B. Let’s be clear about this recycling is just a more responsible form of waste management. That stuff in your recycle bin is still rubbish and has to be dealt with the attendant environmental and financial costs. While recycling may offset these costs it is still expensive. Moreover recycling does not address the main issue of misusing plastic and stupidly using it to make one use throwaway items. The best waste is no waste.

Recycling Plastic

Resin identification code 2 ♴ for high density...

Recycling is altering the physical form of an object or material and making a new object from the altered material.

There are many different types of plastic. It is important to know what they are when recycling.  Most plastics are marked with a plastic code  or a number identifying the type of plastic. This information is used by recyclers.
Mechanical Recycling – very simply, consists of melting down the old plastic and using it to make new products.

Chemical recycling where plastics are actually dissolved back into their original chemical components. These are then cleaned up and reused to make new plastics 

Recycling in the U.K.

Recycled Plastic Products can be found here 5.21 Recycled Plastic Products

Transformation 

Plastic to Energy 5.4 plastic To energy

Reuse & Recrafting Waste Plastic

Reuse when the original product is reused in a different way. Like shredding trainers down into playing field surfacing. Find some great ideas over here 5.4 Plastic trash reused

Recrafted or upcycling is the cottage industry version of the above. Have a look at what these talented folk have done over in the arty crafty part of this blog   2.2 Plastic Crafts and check out my PINTEREST board. Lovely but by no means the answer.

Recycling is greenwashing ?

The focus of this blog is the plastic rubbish created by our addiction to disposable products. As a result I sometimes sound dismissive of recycling. While it certainly has a role to play, and is better then the alternative ways of disposing of plastic, it IS NOT solution for overconsumption of plastic. Recycling does not address the main issue of misusing plastic and stupidly using it to make one use throwaway items. Just because a product can be recycled (or upcycled), is no reason to create plastic rubbish.

Recycling and Reusing waste plastic – a discussion

The best response to plastic trash is to  REFUSE IT and find a compostable alternative.

All recycled plastic posts

Kedel Recycled Plastics

The Problems Presented By Plastic Misuse & How To Combat Them  Today plastics dominate our lives. We use a shocking ...
Read More

Recycled Plastic Lumber

Plastic lumber is often the end product of the plastics (mechanical) recycling chain. Which may go as follows Virgin PET ...
Read More

Swimwear Recycled

Well my Decathlon, unsustainable boy shorts have finally fallen apart and it is time to source some new, more ethical ...
Read More

Whats that dot mean?

The Green Dot is a symbol used on packaging in many European countries. It looks like a recycling logo but ...
Read More

Chemical Recycling

Chemical Recycling Another way to recycle plastics, is chemically. Here plastics are actually dissolved back into their original chemical components. These ...
Read More

boat powered by rubbish

Ocean Ambassadors Mr Midwood and Take Three, Tim Silverwood sailed into town in a boat powered by trash. "We put solid ...
Read More

Recycling & Reusing Plastic – an introduction

This post is an introduction to recycling and reusing plastic non-biodegradable plastic at end of life. (also see Plastic Lifespan and ...
Read More

Gasification

Gasification heats the waste with little or no oxygen in order to produce a chemical reaction. The waste does not ...
Read More

Incineration

Incineration is to dispose of waste materials by burning them. The end results are heat, ash and gases. High-temperature waste treatment systems ...
Read More

Carpets

"The chemicals used in the manufacturing of carpet, interior furnishings and building materials may release volatile organic compounds (VOCs) through ...
Read More

Recycle your own plastic…

Just read this article in Recycle Reminders  about Dutch designer Dave Hakkens. He has just gone and made himself a plastic ...
Read More

Recycling… a post code lottery

I knew that council recycling provision and services varied across the UK but while I have been abroad, it seems ...
Read More

Which plastics are collected for recycling in the UK

Please bear in mind that plastic recycling is a fast moving world with new advances being made all the time ...
Read More

recycling rates down this year

...oh dear - NOT going to meet the 2020 targets and waste creation on the rise. It's one hell of ...
Read More

Recycling Information on your products

Why so much information on my box of chocks? Well several materials have gone into packing those bad boys. The ...
Read More

Some U.K. Recycling Stats

Here are a few statistic to whet your appetite. There are plenty more throughout the blog. Our previous work had ...
Read More

Plastic recycling – the law

This is the law relating the use of plastic. I'll leave you to judge how well it is being applied ...
Read More

Terracycle Recycling Scheme

It is almost impossible these days to buy unwrapped plastic free biscuit unless you live in Huddersfield where you can ...
Read More

Upcycling floppy discs

Is this a bit bonkers? Or incredibly sweet? Floppy discs (who still has those?) into planters. From recycle Uk Facebook ...
Read More

Mechanical Methods Of Recycling Plastic

Most plastics are recycled mechanically though they can also be recycled other ways. Compared with lucrative recycling of materials, such ...
Read More

 

post

Cellophane – a plant derived and biodegradable plastic

Quick Introduction

Cellophane is made from cellulose
It is biodegradable
However the way it is made results in a lot of other kinds of pollution
Cellophane bags were often used to package candy, vegetables and convenience foods.
Cellophane is  easy to tear, reseal and print.
It performs badly  at low temperatures and has a limited shelf life
Cellophane is more expensive than most other types of plastic.
“polypropylene has replaced cellophane to a large degree. For a while cellophane and polypropylene were used in conjunction, thus a ply of cellophane was laminated to a ply of propylene. Now, however, cellophane is mostly abandoned altogether.” Read more here.
Cellotape used to be made from cellophane. now it is made from oil derived plastic.

Find out more about compostable and other types of plastic here

Current Uses

Cellophane is now being used to wrap “green” products because it can be composted. Here are the PLA cornstarch and cellulose compostable plastic products I have composted in my back yard bin. They said it couldn’t be done Mwahahahaha! Read more here.

The History Of Cellophane, how it is made and the pros and cons A guest post from Michael Bloch blogging up on Green Living Tips.com

We see many news stories about developments in the plastics industry to make these items greener. With disposable plastic shopping bags being banned in some places and consumer concern acting as the writing on the wall for the industry, it’s certainly in the sector’s interest to make more environmentally friendly plastic bag and wrap products as soon as possible.

Degradable, compostable and biodegradable plastics may seem like recent inventions, but some have been around for a very long time. One such plastic is cellophane – and it’s now experiencing resurgence in popularity.

Cellophane being plant based didn’t click with me until I was doing some research recently for a restaurant employee who was looking for a biodegradable bag suitable for use with a particular food application – it was only then that it clicked with me the “cello” in cellophane stands for cellulose – the structural component of plants.

Cellophane was invented in 1900, but wasn’t commercially available until 1912. At that point it was mainly used for wrapping candy. When moisture-proof cellophane hit the market in the late 1920′s, it rapidly increased in popularity until the 60′s when alternative petro-chemical based plastics became popular – and we all know how that worked out for the planet.

Quite a few modern bioplastics use plants, but often they use corn as the primary component. Similar to using “food as fuel“; should we be using a grain or a crop grown on land suitable for producing food for non-food uses when arable land (without further deforestation) is becoming a diminishing resource?

Cellophane has an edge here as it can be made from farmed trees or from hemp; which can grow in relatively harsh conditions.

Regarding its composting and biodegradable attributes, I’ve read various reports stating uncoated cellulose film degrades within 10 days to 1 month when buried and nitrocellulose-coated cellulose in 2 months to 3 months. Complete biodegradation of cellulose film is between 1 – 2 months for uncoated products, and from 2.5 to 4 months for coated cellulose products. In a fresh water environment, the rate of biodegradation is only 10 days for uncoated film and a month for coated cellulose film.

As far as I know, corn based bioplastics take far longer to degrade and there’s also some issues with recycling bioplastics made with corn as they are currently classified as a number 7 plastic resin, meaning “other”.

That’s the good news about cellophane; but as with most things, there are some negative aspects too environmentally speaking.

Cellophane is made by dissolving plant fiber in alkali and carbon disulfide to create something called viscose. The viscose is then reconverted to cellulose in cellophane form after a sulfuric acid and sodium sulfate bath. The cellophane is  further treated with glycerol to make the dry cellophane less brittle. The cellophane may then be coated with nitrocellulose or wax to make it impermeable to water vapor. A few nasty chemicals in that process – for example, high levels of carbon disulfide are toxic; affecting the nervous system.

However, given the amount of processing and nasties it takes to turn petro-chemicals; i.e. chemicals derived from crude oil, into plastics and the damage those plastics do long after having been discarded, it would seem to me that cellophane is probably still better environmentally speaking. Stacked up against corn based plastic bags and wraps, the better/worse distinction is a little harder to discern.

Cellophane films and bags are readily available – just run a query on the terms in your favorite search engine to locate a stockist.

Tip: When composting cellophane, scrunch it up instead of laying it flat on your compost pile. This allows for air pockets and some air is necessary when composting any material.

Trivia: another plastic product that’s been around for at least a hundred years also based on plant material is linoleum.

N.B.

lines changes, products get removed. For more information why not ask the Plastic Is Rubbish FB group for updates. They are a great source of tidbits, personal experience and the latest news. Why not join them and share the plastic free love x

And before you go…

If you have found the #plasticfree information useful, please consider supporting us. It all goes to financing the project (read more here) or

Buy Me a Coffee at ko-fi.com

post

Perfluorochemicals and plastic

Perfluorochemicals (PFCs) are a family of man-made chemicals.
They have been around since the 1950s.
They include
perfluorooctane sulfonate (PFOS; C8F17SO3),
perfluorobutane sulfonate ( PFBS; C4F9C03),
perfluorooctanoic acid (PFOA; C8F15O2H),
perfluorobutanoic acid (PFBA; C4F7O2H), and
perfluorohexane sulfonate (PFHxS; C6F13SO3).
They are hydrophobic (water-repelling), and oleophobic (oil-repelling).

They are used

  • as a surface coating for paper and cardboard they make them water and grease resistant and so suitable for packaging processed foods.
  • on carpets,leather products and textiles to make them stain resistant and waterproof.
  • in non stick coatings on cookware and pans.

They are added to some plastics.

They do not break down easily and can last in the enironment for years.

They have been found in both soil and water.

When they enter the food chain they are retained in animal tissue leading to a process called biomagnification, meaning that they are passed on up the foodchain from animal to animal and because they are stored in the body for years the amount increases exponentially as they travel up the food chain.

Recent studies have found perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in human serum.

Human studies have been done for a number of years in workers exposed to high levels of PFCs. These studies have not found consistent effects on health.

Read more here

P.E.Ts

Polyethylene terephthalat frequently shortened to PET or PETE and was formerly called PETP or PET-P.

It is an ethane derived plastic.

PET or PETE  (plastic code 1) is most often used for making fibers, things made by injection molding, and containers for food, drinks, pharmaceuticals, make-up etc.

PET fibers are used with other fibers to strengthen them, to make a fiber filling, for fabrics, and carpets,  automobile tire yarns, conveyor belts and seat belts, for non woven fabrics for stabilizing drainage ditches, culverts, and railroad beds, disposable fabrics for use in medical applications, sanitary protection, menstrual products and nappies.

Its other major use is for bottles and  jars for food processed at low temperatures.

It can be used to make a clear containers allowing the contents to be easily seen and identified.

It is intended for single use food packaging applications as repeated use is said to increase the risk of chemicals leaching from the plastic into the contents. There are claims that some of these chemicals may be carcinogenic and or endocrine disruptors.

PET is only 10% of the weight of an identical glass container, it allows for less expensive shipping and handling, saving a significant amount of money for companies around the world.” Copied from Wise Geek

PET starts softening at around 70 °C (160 °F).

It is claimed that bacteria can  colonise the rough surface of a PET.

PET plastic is an easily recyclable plastic  and about 25% of PET bottles in the US today are recycled.

It is made from carbon, hydrogen and oxygen, just like paper. It is claimed that, just like paper, it can be safely burnt and will only produce carbon dioxide and water leaving no toxic residue.

However the Material Safety Data Sheet for PET states

Can burn in a fire creating dense toxic smoke. Molten plastic can cause severe thermal burns. Fumes produced during melt processing may cause eye, skin and respiratory tract irritation.

Secondary operations, such as grinding, sanding or sawing, can produce dust which may present a respiratory hazard. Product in pellet form is unlikely to cause irritation.
You can find MSDA sheets here
You can find information on the other types of plastic here.

 

Endocrine Disruptors Category 1

Copied from the

The EU list of potential endocrine disruptors

The EU strategy for endocrine disruptors includes the task of compiling a candidate list of potential endocrine disruptors. The list prioritises the substances that must be evaluated further for endocrine disrupting effects.The European Commission has prepared a strategy for endocrine disruptors.

The proposals were compared and a collective EU list of over 432 candidate substances established, which are to be studied further for endocrine-disrupting properties. In order to prioritise efforts, the substances have been subdivided into a number of categories:

Category 1: Substances for which endocrine activity have been documented in at least one study of a living organism. These substances are given the highest priority for further studies. Contains 194 substances. This does not necessarily mean that there is final proof that the substance is an endocrine disruptor, but there is more or less comprehensive evidence of endocrine-disrupting effects in live animals. The substance should therefore be prioritised for further evaluation of endocrine disrupting properties.

Category 2: Substances without sufficient evidence of endocrine activity, but with evidence of biological activity relating to endocrine disruption.

Category 3a and 3b: Substances for which there are no indications of endocrine-disrupting properties or which cannot be evaluated due to a lack of data.

The plan is to convert these lists into a dynamic working list, where substances can be added or removed as more evidence of their endocrine-disrupting properties becomes available.

Category 1

CAS nr. Name
12789-03-6 Chlordane
57-74-9 Chlordane, – cis- og trans-
143-50-0 Kepone (Chlordecone)
2385-85-5 Mirex
8001-35-2 Toxaphene (Camphechlor)
50-29-3 DDT (technical) (Clofenotane)
50-29-3 p,p’-DDT
3563-45-9 Tetrachloro-DDT
50471-44-8 Vinclozolin
12427-38-2 Maneb
137-42-8 Metam Natrium
137-26-8 Thiram
12122-67-7 Zineb
58-89-9 Gamma-HCH (Lindane)
330-55-2 Linuron
1912-24-9 Atrazine
34256-82-1 Acetochlor
15972-60-8 Alachlor
100-42-5 Styrene
118-74-1 Hexachlorobenzene ( HCB)
85-68-7 Butylbenzylphthalate ( BBP)
117-81-7 DEHP (Di-(2-ethylhexyl) phthalate)
84-74-2 DBP (Di-n-butylphthalate)
80-05-7 Bisphenol A(4,4’-isopropylidendiphenol)
1336-36-3 PCB
35065-27-1 PCB 153
32774-16-6 PCB 169
2437-79-8 PCB 47
32598-13-3 PCB 77
53469-21-9 PCB Arochlor 1242
12672-29-6 PCB Arochlor 1248
11097-69-1 PCB Arochlor1254
11096-82-5 PCB Arochlor 1260 (clophen A60)
59536-65-1 PBBs = polybromerede biphenyler
(209 congenere)
40321-76-4 1,2,3,7,8 Pentachloro-dibenzodioxin
(1,2,3,7,8-PCDD)
1746-01-6 2,3,7,8-Tetrachloro-dibenzo-p-dioxin
( 2,3,7,8-TCDD)
107555-93-1 1,2,3,7,8-Pentabromo-dibenzofuran
No CAS Tributyltin compounds
688-73-3 Tributyltin hydride
56-35-9 Tributyl Oxide (bis(tributyltin)oxide)
26354-18-7 Stannane, tributylmecrylate
(Stannane, tributylmethacrylate)
No CAS Methoxyacrylate tributyltin copolymer
4342-30-7 Phenol, 2-(tributylstannyl)oxy)carbonyl-
4342-36-3 Stannane, benzoyloxytributyl-
4782-29-0 Stannane, (1,2- phenylenebis (carbonyloxy))bis(tributyl-
36631-23-9 Stannane, tributyl(naphthalenyloxy)-
(Tributyltin naphtalate)
85409-17-2 Stannane, tributyl- , mono(naphthenoyloxy)-
24124-25-2 Stannane, tributyl (1-oxo-9,12-octadecadienyl)oxy)-
3090-35-5 Stannane, tributyl((1-oxo-9-octadecenyl)oxy)-
26239-64-5 Stannane, (1R-(1alpha,4abeta,4b alpha,10a alpha))-
Tributyl(((1,2,3,4,4a,4b,5,6,10,10a-decahydro-7-isopropyl-
1,4a-dimethyl-1-phenanthryl)carbonyl)oxy)-
1983-10-4 Stannane, tributylfluoro-
2155-70-6 Stannane, tributyl ((2-methyl-1-oxo-2-propenyl)oxy)-
No CAS Tributyltincarboxylate
26636-32-8 Tributyltin naphthalate *
No CAS Tributyltinpolyethoxylate
2279-76-7 Tri-n-propyltin chloride (TPrT chloride)
Flere CAS-numre Triphenyltin
900-95-8 Fentin acetate
95-76-1 3,4-Dichloroaniline
108-46-3 Resorcinol
61-82-5 Amitrol (Aminotriazol)
1836-75-5 Nitrofen
140-66-9 4-tert-octylphenol
25154-52-3 Phenol, nonyl-
1461-25-2 Tetrabutyltin (TTBT)
99-99-0 4-Nitrotoluene
63-25-2 Carbaryl
5103-73-1 Cis-Nonachlor
39765-80-5 Trans-Nonachlor
2971-22-4 1,1,1-trichloro-2,2-bis(4-chloro-phenyl)ethane
65148-80-3 3-MeO-o,p’-DDE
43216-70-2 3-OH-o,p’-DDT
65148-81-4 4-MeO-o,p’-DDE
65148-72-3 4-MeO-o,p’-DDT
65148-75-6 5-MeO-o,p’-DDD
65148-82-5 5-MeO-o,p’-DDE
65148-74-5 5-MeO-o,p’-DDT
65148-73-4 5-OH-o,p’-DDT
4329-12-8 m,p’-DDD
65148-83-6 o,p’-DDA-glycinat
(N-[(2-chlorophenyl)4-chlorophenyl)acetyl]glycin)
53-19-0 o,p’-DDD
3424-82-6 o,p’-DDE
14835-94-0 o,p’-DDMU
789-02-6 o,p’-DDT
72-54-8 p,p’-DDD
1022-22-6 p,p’-DDMU
72-55-9 p,p’-DDE
32809-16-8 Procymidon
8018-01-7 Mancozeb
9006-42-2 Metiram(Metiram-complex
319-85-7 Beta-HCH(isomer til gamma-HCH = Lindan)
608-73-1 Hexachlorocyclo-hexane= HCH mixed (inkluderer gamma-HCH = Lindan)
1689-83-4 Ioxynil
2971-36-0 1,1,1-trichloro-2,2-bis(4-Hydroxyphenyl)ethane(HPTE)
30668-06-5 1,3-Dichloro-2,2-bis(4-methoxy-3- methylphenyl)propane
2971-36-0 Bis-OH-Methoxychlor(1,1,1- trichloro-2,2-bis(4-hydroxyphenyl)ethane (HTPE))
72-43-5 Methoxychlor
72-43-5 p,p’-Methoxychlor
122-14-5 Fenitrothion
82657-04-3 Bifenthrin (@Talstar)
91465-08-6 Cyhalothrin, lambda-
52918-63-5 Deltamethrin
10453-86-8 Resmethrin
60168-88-9 Fenarimol
1918-02-1 Picloram
65277-42-1 Ketoconazol
1087-64-9 Metribuzin
86-50-0 Terbutryn
106-93-4 Ethylene Dibromid (1,2-dibromethan or EDB)
12002-48-1 Trichlorobenzene
608-93-5 Pentachlorobenzene
87-86-5 Pentachlorophenol (PCP)
1806-26-4 4-octylphenol
11081-15-5 4-isooctylphenol
9016-45-9 Nonylphenolethoxylat
85535-85-9 Intermediate chain chlorinated paraffins
85535-84-8 Short chain chlorinated paraffins
84-61-7 Dicyclohexyl phthalate (DCHP)
84-66-2 Diethyl phthalate (DEP)
101-53-1 Phenyl-4-hydroxy-phenylmethane
(4-Benzylphenol eller p-Benzylphenol)
25036-25-3 2,2′-bis(2-(2,3-epoxypropoxy) phenyl)propane
(2,2-BPPP) (isomer til BADGE)
106-89-8 Epichlorohydrin (3-Chloro-1,2-epoxypropane)
35693-92-6 2,4-6-Trichlorobiphenyl
53555-66-1 3,4′,5-Trichlorobiphenyl
67651-37-0 3-Hydroxy-2′,3′,4′,5′- tetrachlorobiphenyl
100702-98-5 4,4′-Dihydroxy-2,3,5,6-tetrachlorobiphenyl
13049-13-3 4,4′-Dihydroxy-3,3′,5,5′-tetrachlorobiphenyl
67651-34-7 4-Hydroxy-2′,3′,4′,5′-tetrachlorobiphenyl
14962-28-8 4-Hydroxy-2′,4′,6′-trichlorobiphenyl
53905-33-2 4-Hydroxy-2,2’, 5′-trichlorobiphenyl
111810-41-4 4-Hydroxy-3,3′,4′,5′-tetrachlorobiphenyl
4400-06-0 4-Hydroxy-3,4’, 5-trichlorobiphenyl
37680-73-2 4-OH-2,2′,4′,5,5′-pentachlorobiphenyl
54991-93-4 Clophen A30
8068-44-8 Clophen A50
No CAS Blanding af 2,3,4,5-Tetrachlorobiphenyl (PCB 61), 2,2’, 4,5,5′-Octachlorobiphenyl (PCB 101) og 2,2′,3,3′,4,4′,5,5′-Octachlorobiphenyl (PCB 194)
56558-16-8 PCB 104(2,2′,4,6,6′-Penta-chlorobiphenyl)
74472-37-0 PCB 114 (2,3,4,4′,5-Penta-chlorobiphenyl)
76842-07-4 PCB 122 (2,3,3′,4,5-Penta-chlorobiphenyl)
57465-28-8 PCB 126(3,3′,4,4′,5-Penta-chlorobiphenyl)
38380-07-3 PCB 128(2,2′,3,3′,4,4′-Hexachloro-biphenyl)
37680-65-2 PCB 18 (2,2′,5-Tri-chlorobiphenyl)
55702-46-0 PCB 21 (2,3,4-Trichloro-biphenyl)
No CAS PCB Aroclor 1016
32598-14-4 PCB 105 (2,3,3′,4,4′ -Penta-chlorobiphenyl)
7012-37-5 PCB 28 (2,4,4′-Tri-chlorobiphenyl)
35693-99-3 PCB 52 (2,2′;5,5′-Tetra-chlorobiphenyl)
35065-28-2 PCB 138(2,2′,3,4,4′,5′- Hexachlorobiphenyl)
35065-29-3 PCB180(2,2′,3,4,4′,5,5′- Heptachlorobiphenyl)
31508-00-6 PCB 118(2,3′,4,4′,5-Penta-chlorobiphenyl)
12642-23-8 PCT Aroclor 5442
56614-97-2 3,9-Dihydroxy-benz(a)anthracene (3,9-DBA)
7099-43-6 5,6-Cyclopento-1,2-benzanthracene
(3,5-CPBA)
56-49-5 3-Methylcholanthrene (3-MC)
57-97-6 7,12-Dimethyl-1,2-benz(a)anthracene
(DMBA)
50-32-8 Benzo[a]pyrene (BAP)
50585-41-6 2,3,7,8-TeBDD
(tetrabrominated dibenzodioxin)
118174-38-2 6-Methyl-1,3,8-trichloro-dibenzofuran
94-82-6 2,4-dichlorophenoxy-butyric acid ( 2,4-DB)
72-33-3 Mestranol
10043-35-3 Boric Acid
104-40-5 Nonylphenol (4-NP)
1113-02-6 Omethoate
1131-60-8 4-Cyclohexylphenol
120-47-8 Ethyl 4-hydroxybenzoate (Ethylparaben)
131-18-0 Di-n-pentylphthalate (DPP)
131-55-5 Benzophenone-2
( 2,2’,4,4’ tetra-hydroxybenzophenon)
131-56-6 2,4-Dihydroxybenzophenon
(Benzophenone-1)
131-70-4 Mono-n-butylphthalate
13593-03-8 Quinalphos (Chinalphos)
15087-24-8 3-Benzylidene camphor (3-BC)
1582-09-8 Trifluralin
1634-04-4 Methyl-tert-butylether (MTBE)
25013-16-5 tert. Butylhydroxyanisol (BHA)
27193-28-8 Phenol, (1,1,3,3-tetramethylbutyl)-
(Octylphenol)
33204-76-1 2,6-cis-Diphenylhexamethyl-cyclotetrasiloxane
36861-47-9 3-(4-methyl-benzylidene)camphor
4376-20-9 Mono-2-ethylhexylphthalate (MEHP)
50-18-0 Cyclophosphamide
611-99-4 4,4’-Dihydroxy-benzophenone
6164-98-3 Chlordimeform
7400-08-0 p-Coumaric acid (PCA)
77-09-8 3,3’Bis(4-hydroxyphenyl) phthalid
(Phenolphthaleine)
77-40-7 2,2-Bis(4-hydroxy-phenyl)-n-butan
(Bisphenol B)
92-69-3 4-Hydroxybiphenyl (4-Phenylphenol)
92-88-6 4,4’Dihydroxy-biphenyl
94-13-3 n-Propyl p-hydroxybenzoate (Propylparaben)
94-26-8 n-Butyl p-hydroxybenzoate (Butylparaben)
96-12-8 Dibromochloropropane (DBCP)
96-45-7 Ethylene Thiourea (ETU)
99-76-3 Methyl p-hydroxybenzoate (Methylparaben)
99-96-7 p-Hydroxybenzoic acid
____________
* The original report to the EU contained this CAS number, which the Danish Environmental Protection Agency has noted is erroneous. Tributyltin naphthalate is already listed under CAS no. 36631-23-9.
Category 1

post

Micro-plastics & pollution

Micro plastics are microscopic or very small pieces of plastic that can be found in soil, water even in the air. They are too small to collect or clean up so there they stay. We have now  changed the ecosphere irreversibly – with as yet unknown results.

“The scale of global microplastic contamination is only starting to become clear, with studies in Germany finding fibres and fragments in all of the 24 beer brands they tested, as well as in honey and sugar. In Paris in 2015, researchers discovered microplastic falling from the air, which they estimated deposits three to 10 tonnes of fibres on the city each year, and that it was also present in the air in people’s homes.”

And in the tap water too

Scores of tap water samples from more than a dozen nations were analysed by scientists for an investigation by Orb Media, who shared the findings with the Guardian. Overall, 83% of the samples were contaminated with plastic fibres.
The US had the highest contamination rate, at 94%, with plastic fibres found in tap water sampled at sites including Congress buildings, the US Environmental Protection Agency’s headquarters, and Trump Tower in New York. Lebanon and India had the next highest rates.

All from the Guardian

But there are ways to combat this! Read on…..

Sources of micro plastics are

  • Degraded plastic – larger plastic products breaking down into smaller pieces
  • Cosmetic products that  contain tiny plastic beads which are washed off and washed out to sea.
  • Synthetic clothing.

Degraded Plastic

Traditional plastics degrade rather than biodegrade, which means they simply break up and fall apart into smaller pieces. The plastic has not changed its structure as such – merely fragmented. And it seems the process can continue indefinitely. Particles of plastic of 20 microns in diameter (a width thinner than a human hair) have been identified.

These particles are called micro plastics. And  they are being found in increasing amounts in seawater and rivers.  Professor Richard Thompson from the University of Plymouth have found particles smaller than a grain of sand and  estimate there are 300,000 items of plastic per sq km of sea surface, and 100,000 per sq km of seabed. There is more on Professor Richard Thompsons work here

What to do?

Cosmetics  

Tiny plastic beads are added to some product for texture or colour. Some exfoliating scrubs and toothpastes contain them. These beads are washed down the plughole after use, are too small to be filtered out of waste water and so end up in the water ways. A ridiculous form of pollution and

What to do?

Synthetic Fabrics

Washing synthetic fabrics and clothing also releases millions of microscopic plastic fibers. These are then discharge into sewage system and ultimately out to sea.

By sampling wastewater from domestic washing machines, Dr Browne estimated that around 1,900 individual fibers can be rinsed off a single synthetic garment – ending up in our oceans. And that, 85% of synthetic  material found on the shoreline were nylon and acrylic microfibers, and matched the types of material used in clothing.

“We were quite surprised. Some polyester garments released more than 1,900 fibres per garment, per wash,” Dr Browne observed. “It may not sound like an awful lot, but if that is from a single item from a single wash”

You can read the full report here and the clothing industries response here in the the guardian, and about Dr Browne here.

What to do ?

  • wear mostly natural compostable fibres with limited synthetic fibres, (used only for specialist clothing that doesnt need washing often).

Toxic Plastic?

plastic planktonAs we already know from this blog,tiny sea creatures, the bedrock of the food chain, ingest these micro plastics. You can see plankton hoovering up plastic here.  There is increasing evidence that this is not a healthy diet.

Why?

While some plastics are toxic (you can read up on poisons in synthetic fabric here) others are said to be non toxic. So the should pass through the digestive system without doing any damage?

Eating “non toxic” plastic is obviously unhealthy. It  has no nutritional value at all and a plastic based diet is  not good for general well being. But there are other, more insidious dangers.  These tiny plastic particles attract unpleasant chemicals called  persistent organic Pollutants (POPs). POPs are a small set of toxic chemicals that remain intact in the environment for long periods and bio- accumulate in the fatty tissues of animals.

They “stick” to the plastic. Bottom feeders eat the plastic pellets and so the POPs enter the food chain. So even if the plastic particle is in itself non toxic the chemical attached are not.

A Dialogue ( from Green Plastics)

Achilles: As far as we know, it’s not toxic…

Tortoise: Aha!

Achilles: …but it can attract toxic materials. There was a study2 that showed that degraded plastic residues can attract and hold toxins like PCB and DDT up to one million times normal levels. The PCB’s and DDT’s are already in the environment, but are usually so diluted that they are not a significant risk. However, plastic residues concentrate these chemicals, until they can build up to toxic levels.

More

You can see all posts, reports and studies on micro plastics here

And read more about the problems with plastic here

Phthalates.

  • are used as a plasticiser  used to make a material like PVC softer and more flexible.
  • But they are also used in a wide range of other products.
  • They are small molecules that can dissolve into liquids that come into contact with them.
  • they  are endocrine-disrupting chemicals.

Phthalate plasticizers are colorless liquids like vegetable oil with a faint odor, and they are insoluble in water. They are however, miscible in mineral oil, hexane, and most organic solvents. This makes them readily soluble in bodily fluids, such as plasma and saliva (1).

Two good examples of phthalate plasticizers are DEHP ( Di-Ethylhexyl Phthalate), and DINP (Di-Isononyl Phthalate).DEHP has been the most commonly used, and is still the plasticizer of choice for all PVC medical and surgical products.However due to evidence of the toxicity of DEHP in laboratory animal studies it was replaced in childrens products with DINP.

Endocrine disrupting chemicals (EDCs) and potential EDCs are mostly man-made, found in various materials such as pesticides, metals, additives or contaminants in food, and personal care products. EDCs have been suspected to be associated with altered reproductive function in males and females; increased incidence of breast cancer, abnormal growth patterns and neurodevelopmental delays in children, as well as changes in immune function. World Health Organisation

Di(2-ethylhexyl) phthalate is widely used as a plasticizer in flexible vinyl products. Plastics may contain from 1 to 40% di(2-ethylhexyl) phthalate by weight and are used in consumer products such as
  • imitation leather,
  • rainwear,
  • footwear,
  • upholstery,
  • flooring,
  • wire and cabels,
  • tablecloths,
  • shower curtains,
  • food packaging materials,
  • children’toys.
  • tubing and containers for blood products and transfusions.
It is also found in
  • rubbing alcohol,
  • liquid detergents,
  • decorative inks,
  • munitions,
  • industrial and lubricating oils and defoaming agents during paper and paperboard manufacture (Environmental Protection Agency, 1998)
  • hydraulic fluid and as a dielectric fluid (a non-conductor of electric current) in electrical capacitors (Agency for Toxic Substances and Disease Registry, 1989).

Phthalates & Cosmetics.

Non-classified phthalates, DMP and DEP are the most widely used in cosmetics in the EU. They have not been classified or restricted because they do not pose any risks for our health or the environment.

Classified low orthophthalates such as  DBP and DIBP are no longer found in products manufactured and sold in the European Union due to provisions of the European Cosmetics legislation, which prohibits the use of substances classified for carcinogenic, mutagenic and reprotoxic (CMR) hazards.

This EU legislation does not apply in other regions of the world, such as the US, where classified low orthophthalates are still permitted, although some companies have voluntarily stopped using them.

Historically, the phthalates used in cosmetic products have been dibutyl phthalate (DBP), used as a plasticizer in products such as nail polishes to reduce cracking by making them less brittle; dimethyl phthalate (DMP), used in hair sprays to help avoid stiffness by allowing them to form a flexible film on the hair; and diethyl phthalate (DEP), used as a solvent and fixative in fragrances. DEP can also function as an alcohol denaturant , rendering alcoholic products unfit for oral consumption.    DEP is the only phthalate still periodically used in cosmetics

Phthalates Leaching From Plastic.

Because phthalate plasticizers are not chemically bound to PVC, they can easily leach and evaporate into food or the atmosphere. Phthalate exposure can be through direct use or by indirect means through leaching and general environmental contamination. Diet is believed to be the main source of di(2-ethylhexyl) phthalate (DEHP) and other phthalates in the general population. Fatty foods such as milk, butter, and meats are a major source.  Wikkipedia

“ A 2011 study demonstrated that just a three-day period of limiting intake of packaged foods decreased by half the concentrations of DEHP found in urine (Rudel, 2011)”

Some studies also claim that phthalates are readily absorbed through the skin (Janjua, 2008) and can also enter the body through inhalation or medical injection procedures (Schettler, 2005).

When plastic toys are chewed by a child the plasticiser may be dissolved by the saliva of the child and possibly ingested.

Phthalates have been found in indoor air and dust (Rudel, 2001) and in human urine and blood samples from children, adolescents and adults (Calafat, 2011; Frederiksen, 2011; Kato, 2003; Rudel, 2011).

They are also found in breast milk.

Di(2-ethylhexyl) phthalate released into air can be carried for long distances in the troposphere and it has been detected over the Atlantic and Pacific Oceans; wash-out by rain appears to be a significant removal process (Atlas & Giam, 1981; Giam

Are they dangerous?

In a National Institutes of Health (NIH) report published in 2000, di-2-ehtylhexyl phthalate (DEHP), commonly found in PVC plastics, was found reasonably anticipated to be a human carcinogen.

The breast cancer fund have no doubts that it causes cancer and the reports they quote all reinforce that view

The International Agency for Research on Cancer (IARC) reclassified DEHP as non-carcinogenic to humans.

How much is out there?

Production of di(2-ethylhexyl) phthalate in the United States increased during the 1980s, from approximately 114 000 tonnes in 1982 to over 130 000 tonnes in 1986 (Environmental Protection Agency, 1998).
In 1994, production of di(2- ethylhexyl) phthalate in the United States was 117 500 tonnes; production in Japan in 1995 was 298 000 tonnes; production in Taiwan in 1995 was 207 000 tonnes, down from 241 000 tonnes in 1994 (Anon., 1996).

Most Common Phthalates In Use

Name Abbreviation Structural formula Molecular weight (g/mol) CAS No.
Dimethyl phthalate DMP C6H4(COOCH3)2 194.18 131-11-3
Diethyl phthalate DEP C6H4(COOC2H5)2 222.24 84-66-2
Diallyl phthalate DAP C6H4(COOCH2CH=CH2)2 246.26 131-17-9
Di-n-propyl phthalate DPP C6H4[COO(CH2)2CH3]2 250.29 131-16-8
Di-n-butyl phthalate DBP C6H4[COO(CH2)3CH3]2 278.34 84-74-2
Diisobutyl phthalate DIBP C6H4[COOCH2CH(CH3)2]2 278.34 84-69-5
Butyl cyclohexyl phthalate BCP CH3(CH2)3OOCC6H4COOC6H11 304.38 84-64-0
Di-n-pentyl phthalate DNPP C6H4[COO(CH2)4CH3]2 306.40 131-18-0
Dicyclohexyl phthalate DCP C6H4[COOC6H11]2 330.42 84-61-7
Butyl benzyl phthalate BBP CH3(CH2)3OOCC6H4COOCH2C6H5 312.36 85-68-7
Di-n-hexyl phthalate DNHP C6H4[COO(CH2)5CH3]2 334.45 84-75-3
Diisohexyl phthalate DIHxP C6H4[COO(CH2)3CH(CH3)2]2 334.45 146-50-9
Diisoheptyl phthalate DIHpP C6H4[COO(CH2)4CH(CH3)2]2 362.50 41451-28-9
Butyl decyl phthalate BDP CH3(CH2)3OOCC6H4COO(CH2)9CH3 362.50 89-19-0
Di(2-ethylhexyl) phthalate DEHP, DOP C6H4[COOCH2CH(C2H5)(CH2)3CH3]2 390.56 117-81-7
Di(n-octyl) phthalate DNOP C6H4[COO(CH2)7CH3]2 390.56 117-84-0
Diisooctyl phthalate DIOP C6H4[COO(CH2)5CH(CH3)2]2 390.56 27554-26-3
n-Octyl n-decyl phthalate ODP CH3(CH2)7OOCC6H4COO(CH2)9CH3 418.61 119-07-3
Diisononyl phthalate DINP C6H4[COO(CH2)6CH(CH3)2]2 418.61 28553-12-0
Di(2-propylheptyl) phthalate DPHP C6H4[COOCH2CH(CH2CH2CH3)(CH2)4CH3]2 446.66 53306-54-0
Diisodecyl phthalate DIDP C6H4[COO(CH2)7CH(CH3)2]2 446.66 26761-40-0
Diundecyl phthalate DUP C6H4[COO(CH2)10CH3]2 474.72 3648-20-2
Diisoundecyl phthalate DIUP C6H4[COO(CH2)8CH(CH3)2]2 474.72 85507-79-5
Ditridecyl phthalate DTDP C6H4[COO(CH2)12CH3]2 530.82 119-06-2
Diisotridecyl phthalate DIUP C6H4[COO(CH2)10CH(CH3)2]2 530.82 68515-47-9
Sources
Interesting links

Endocrine System & Endocrine Disruptors

A few quotes on the endocrine system…….

“Although we rarely think about them, the glands of the endocrine system and the hormones they release influence almost every cell, organ, and function of our bodies. The endocrine system is instrumental in regulating mood, growth and development, tissue function, and metabolism, as well as sexual function and reproductive processes.

In general, the endocrine system is in charge of body processes that happen slowly, such as cell growth. Faster processes like breathing and body movement are controlled by the nervous system. But even though the nervous system and endocrine system are separate systems, they often work together to help the body function properly.”Kids health

“Endocrine systems, are found in all mammals, birds, fish, and many other types of living organisms. They are made up of:

Glands located throughout the body.
Hormones that are made by the glands and released into the bloodstream or the fluid surrounding cells.
Receptors in various organs and tissues that recognize and respond to the hormones.
Hormones are released by glands and travel throughout the body, acting as chemical messengers.

Hormones interface with cells that contain matching receptors in or on their surfaces. The hormone binds with the receptor, much like a key would fit into a lock. The hormones, or keys, need to find compatible receptors, or locks, to work properly. Although hormones reach all parts of the body, only target cells with compatible receptors are equipped to respond. Once a receptor and a hormone bind, the receptor carries out the hormone’s instructions by either altering the cell’s existing proteins or turning on genes that will build a new protein. Both of these actions create reactions throughout the body. Researchers have identified more than 50 hormones in humans and other vertebrates.

The endocrine system regulates all biological processes in the body from conception through adulthood and into old age, including the development of the brain and nervous system, the growth and function of the reproductive system, as well as the metabolism and blood sugar levels. The female ovaries, male testes, and pituitary, thyroid, and adrenal glands are major constituents of the endocrine system.”The EPA website

“The Endocrine Disruptor Screening Program (EDSP) focuses on the estrogen, androgen, and thyroid hormones. Estrogens are the group of hormones responsible for female sexual development. They are produced primarily by the ovaries and in small amounts by the adrenal glands. Androgens are responsible for male sex characteristics. Testosterone, the sex hormone produced by the testicles, is an androgen. The thyroid gland secretes two main hormones, thyroxine and triiodothyronine, into the bloodstream. These thyroid hormones stimulate all the cells in the body and control biological processes such as growth, reproduction, development, and metabolism. For additional information on the endocrine system and endocrine disruptors, visit the Endocrine Primer.” The EPA website

“Endocrine Disruptors

Endocrine disruptors are chemicals that may interfere with the body’s endocrine system and produce adverse developmental, reproductive, neurological, and immune effects in both humans and wildlife. A wide range of substances, both natural and man-made, are thought to cause endocrine disruption, including pharmaceuticals, dioxin and dioxin-like compounds, polychlorinated biphenyls, DDT and other pesticides, and plasticizers such as bisphenol A. Endocrine disruptors may be found in many everyday products– including plastic bottles, metal food cans, detergents, flame retardants, food, toys, cosmetics, and pesticides.” National institute of Environmental Health Sciences
“Disruption of the endocrine system can occur in various ways. Some chemicals mimic a natural hormone, fooling the body into over-responding to the stimulus (e.g., a growth hormone that results in increased muscle mass), or responding at inappropriate times (e.g., producing insulin when it is not needed). Other endocrine disrupting chemicals block the effects of a hormone from certain receptors (e.g. growth hormones required for normal development). Still others directly stimulate or inhibit the endocrine system and cause overproduction or underproduction of hormones (e.g. an over or underactive thyroid). Certain drugs are used to intentionally cause some of these effects, such as birth control pills. In many situations involving environmental chemicals, however, an endocrine effect is not desirable.

In recent years, some scientists have proposed that chemicals might inadvertently be disrupting the endocrine system of humans and wildlife. A variety of chemicals have been found to disrupt the endocrine systems of animals in laboratory studies, and there is strong evidence that chemical exposure has been associated with adverse developmental and reproductive effects on fish and wildlife in particular locations. The relationship of human diseases of the endocrine system and exposure to environmental contaminants, however, is poorly understood and scientifically controversial (Kavlock et al., 1996, EPA, 1997).

One example of the devastating consequences of the exposure of developing animals, including humans, to endocrine disruptors is the case of the potent drug diethylstilbestrol (DES), a synthetic estrogen. Prior to its ban in the early 1970’s, doctors mistakenly prescribed DES to as many as five million pregnant women to block spontaneous abortion and promote fetal growth. It was discovered after the children went through puberty that DES affected the development of the reproductive system and caused vaginal cancer. Since then, Congress has improved the evaluation and regulation process of drugs and other chemicals. The recent requirement of the establishment of an endocrine disruptor screening program is a highly significant step.docrine disruptor screening program is a highly significant step.”The EPA website

Find out more about the endocrine disruptors in plastic here

post

Antimony

Is a persistent, bioaccumulative and toxic chemical – ie one that lasts a long time, accumulates in the food chain and is, well, toxic. Read more here…

Humans absorb  antimony  from the  air, drinking water and  food – but also by skin contact with soil and contaminated substances.

Exposure to “relatively high concentrations of antimony (9 mg/m3 of air)” over long periods of time ( doesn’t say how long is long)  can cause irritation of the eyes, skin and lungs.

Greater exposure may result in lung diseases, heart problems, diarrhea, severe vomiting and stomach ulcers.

It is not known whether antimony can cause cancer or reproductive failure.

Animals

“Relatively high” levels may kill rats, rabbits and guinea pigs and can cause damage  to the lungs, heart, liver and kidney of a rat.

Low levels of antimony in the air, experienced for a long time, may result in eye irritation, hair loss and lung damage in animals. Even shorter exposures of a couple of months may result in fertility problems.

Dogs may experience heart problems if exposed to low levels of antimony.

Environment

Antimony is most often found in soil.

It can travel long distances through water.

Products

Antimony is used in

  • Polyester – a synthetic fabric -you always knew those slacks were wrong!
  • PET bottles – used in the beverage industry

Its is shown to leach from both those products.

With thanks to

 Lentech and EPA