post

Plastic in Fish

Blackfin tuna (Manooch and Mason. 1983)

Chelsea M. Rochman, Rebecca L. Lewison, Marcus Eriksen, Harry Allen,

Anna-Marie Cook, Swee J. Teh,

Polybrominated diphenyl ethers (PBDEs) in fish tissue may be an indicator of plastic contamination in marine habitats, Science of The Total Environment, Volumes 476–477, 1 April

2014, Pages 622-633, ISSN 0048-9697,

(http://www.sciencedirect.com/science/article/pii/S0048969714000679)

Abstract: The accumulation of plastic debris in pelagic habitats of the subtropical gyres is a global phenomenon of growing concern, particularly with regard to wildlife. When animals ingest plastic debris that is associated with chemical contaminants, they are at risk of bioaccumulating hazardous pollutants. We examined the relationship

between the bioaccumulation of hazardous chemicals in myctophid fish associated with plastic debris and plastic contamination in remote and previously unmonitored pelagic habitats in the South Atlantic Ocean.

Using a published model, we defined three sampling zones where accumulated densities of plastic debris were predicted to differ.

Contrary to model predictions, we found variable levels of plastic debris density across all stations within the sampling zones.

Mesopelagic lanternfishes, sampled from each station and analyzed for bisphenol A (BPA), alkylphenols, alkylphenol ethoxylates, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), exhibited variability in contaminant levels, but this variability was not related to plastic debris density for most of the targeted compounds with the exception of PBDEs. We found that myctophid sampled at stations with greater plastic densities did have significantly larger concentrations of BDE#s 183 –209 in their tissues suggesting that higher brominated congeners of PBDEs, added to plastics as flame-retardants, are indicative of plastic contamination in the marine environment. Our results provide data on a previously unsampled pelagic gyre and highlight the challenges associated with characterizing plastic debris accumulation and associated risks to wildlife.

Keywords: Plastic debris; Myctophid; Polybrominated diphenyl ethers

(PBDEs); South Atlantic Gyre

More

More reports on other animal deaths can be found here

Global Garbage News

Latest reports, research papers  and news stories about plastic can be found here, (other reports and statistics about other plastic related issues can be found here)

Thanks to Fabiano of www.globalgarbage.org for keeping us well informed.

 

, News, Marine Pollution Bulletin, Volume 102, Issue 1, 15 January 2016, Pages 4-8, ISSN 0025-326X,http://dx.doi.org/10.1016/j.marpolbul.2015.12.015.
(http://www.sciencedirect.com/science/article/pii/S0025326X15006360)

http://www.globalgarbage.org.br/mailinglist/S0025326X15006360.pdf

Tim Jesper Suhrhoff, Barbara M. Scholz-Böttcher, Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics — A lab experiment, Marine Pollution Bulletin, Volume 102, Issue 1, 15 January 2016, Pages 84-94, ISSN 0025-326X,http://dx.doi.org/10.1016/j.marpolbul.2015.11.054.
(http://www.sciencedirect.com/science/article/pii/S0025326X15302010)
Abstract: Four common consumer plastic samples (polyethylene, polystyrene, polyethylene terephthalate, polyvinylchloride) were studied to investigate the impact of physical parameters such as turbulence, salinity and UV irradiance on leaching behavior of selected plastic components. Polymers were exposed to two different salinities (i.e. 0 and 35 g/kg), UV radiation and turbulence. Additives (e.g. bisphenol A, phthalates, citrates, and Irgafos® 168 phosphate) and oligomers were detected in initial plastics and aqueous extracts. Identification and quantification was performed by GC–FID/MS. Bisphenol A and citrate based additives are leached easier compared to phthalates. The print highly contributed to the chemical burden of the analyzed polyethylene bag. The study underlines a positive relationship between turbulence and magnitude of leaching. Salinity had a minor impact that differs for each analyte. Global annual release of additives from assessed plastics into marine environments is estimated to be between 35 and 917 tons, of which most are derived from plasticized polyvinylchloride.
Keywords: Consumer plastic; Leaching; Saltwater; Turbulence; UV; Additives

http://www.globalgarbage.org.br/mailinglist/S0025326X15302010.pdf

Outi Setälä, Joanna Norkko, Maiju Lehtiniemi, Feeding type affects microplastic ingestion in a coastal invertebrate community, Marine Pollution Bulletin, Volume 102, Issue 1, 15 January 2016, Pages 95-101, ISSN 0025-326X, http://dx.doi.org/10.1016/j.marpolbul.2015.11.053.
(http://www.sciencedirect.com/science/article/pii/S0025326X15302009)
Abstract: Marine litter is one of the problems marine ecosystems face at present, coastal habitats and food webs being the most vulnerable as they are closest to the sources of litter. A range of animals (bivalves, free swimming crustaceans and benthic, deposit-feeding animals), of a coastal community of the northern Baltic Sea were exposed to relatively low concentrations of 10 μm microbeads. The experiment was carried out as a small scale mesocosm study to mimic natural habitat. The beads were ingested by all animals in all experimental concentrations (5, 50 and 250 beads mL− 1). Bivalves (Mytilus trossulus, Macoma balthica) contained significantly higher amounts of beads compared with the other groups. Free-swimming crustaceans ingested more beads compared with the benthic animals that were feeding only on the sediment surface. Ingestion of the beads was concluded to be the result of particle concentration, feeding mode and the encounter rate in a patchy environment.
Keywords: Microlitter; Bivalve; Crustacean; Ingestion; Coastal; Marine food web

http://www.globalgarbage.org.br/mailinglist/S0025326X15302009.pdf

Fabiana Tavares Moreira, Alessandro Lívio Prantoni, Bruno Martini, Michelle Alves de Abreu, Sérgio Biato Stoiev, Alexander Turra, Small-scale temporal and spatial variability in the abundance of plastic pellets on sandy beaches: Methodological considerations for estimating the input of microplastics, Marine Pollution Bulletin, Volume 102, Issue 1, 15 January 2016, Pages 114-121, ISSN 0025-326X,http://dx.doi.org/10.1016/j.marpolbul.2015.11.051.
(http://www.sciencedirect.com/science/article/pii/S0025326X15301983)
Abstract: Microplastics such as pellets have been reported for many years on sandy beaches around the globe. Nevertheless, high variability is observed in their estimates and distribution patterns across the beach environment are still to be unravelled. Here, we investigate the small-scale temporal and spatial variability in the abundance of pellets in the intertidal zone of a sandy beach and evaluate factors that can increase the variability in data sets. The abundance of pellets was estimated during twelve consecutive tidal cycles, identifying the position of the high tide between cycles and sampling drift-lines across the intertidal zone. We demonstrate that beach dynamic processes such as the overlap of strandlines and artefacts of the methods can increase the small-scale variability. The results obtained are discussed in terms of the methodological considerations needed to understand the distribution of pellets in the beach environment, with special implications for studies focused on patterns of input.
Keywords: Solid wastes; Input; Tidal cycle; Transect; Strandline

http://www.globalgarbage.org.br/mailinglist/S0025326X15301983.pdf

Christoph D. Rummel, Martin G.J. Löder, Nicolai F. Fricke, Thomas Lang, Eva-Maria Griebeler, Michael Janke, Gunnar Gerdts, Plastic ingestion by pelagic and demersal fish from the North Sea and Baltic Sea, Marine Pollution Bulletin, Volume 102, Issue 1, 15 January 2016, Pages 134-141, ISSN 0025-326X, http://dx.doi.org/10.1016/j.marpolbul.2015.11.043.
(http://www.sciencedirect.com/science/article/pii/S0025326X15301922)
Abstract: Plastic ingestion by marine biota has been reported for a variety of different taxa. In this study, we investigated 290 gastrointestinal tracts of demersal (cod, dab and flounder) and pelagic fish species (herring and mackerel) from the North and Baltic Sea for the occurrence of plastic ingestion. In 5.5% of all investigated fishes, plastic particles were detected, with 74% of all particles being in the microplastic (< 5 mm) size range. The polymer types of all found particles were analysed by means of Fourier transform infrared (FT-IR) spectroscopy. Almost 40% of the particles consisted of polyethylene (PE). In 3.4% of the demersal and 10.7% of the pelagic individuals, plastic ingestion was recorded, showing a significantly higher ingestion frequency in the pelagic feeders. The condition factor K was calculated to test differences in the fitness status between individuals with and without ingested plastic, but no direct effect was detected.
Keywords: Marine debris; Plastic; Fish; Ingestion; North Sea; Baltic Sea

http://www.globalgarbage.org.br/mailinglist/S0025326X15301922.pdf

http://www.enveurope.com/content/28/1/2

Karen Duis and Anja Coors
Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects
Environmental Sciences Europe 2016, 28:2
doi:10.1186/s12302-015-0069-y

Abstract
Due to the widespread use and durability of synthetic polymers, plastic debris occurs in the environment worldwide. In the present work, information on sources and fate of microplastic particles in the aquatic and terrestrial environment, and on their uptake and effects, mainly in aquatic organisms, is reviewed. Microplastics in the environment originate from a variety of sources. Quantitative information on the relevance of these sources is generally lacking, but first estimates indicate that abrasion and fragmentation of larger plastic items and materials containing synthetic polymers are likely to be most relevant. Microplastics are ingested and, mostly, excreted rapidly by numerous aquatic organisms. So far, there is no clear evidence of bioaccumulation or biomagnification. In laboratory studies, the ingestion of large amounts of microplastics mainly led to a lower food uptake and, consequently, reduced energy reserves and effects on other physiological functions. Based on the evaluated data, the lowest microplastic concentrations affecting marine organisms exposed via water are much higher than levels measured in marine water. In lugworms exposed via sediment, effects were observed at microplastic levels that were higher than those in subtidal sediments but in the same range as maximum levels in beach sediments. Hydrophobic contaminants are enriched on microplastics, but the available experimental results and modelling approaches indicate that the transfer of sorbed pollutants by microplastics is not likely to contribute significantly to bioaccumulation of these pollutants. Prior to being able to comprehensively assess possible environmental risks caused by microplastics a number of knowledge gaps need to be filled. However, in view of the persistence of microplastics in the environment, the high concentrations measured at some environmental sites and the prospective of strongly increasing concentrations, the release of plastics into the environment should be reduced in a broad and global effort regardless of a proof of an environmental risk.

Keywords: Plastic debris; Environmental concern; Persistence; Personal care products; Cosmetic products; Microplastic

http://www.enveurope.com/content/pdf/s12302-015-0069-y.pdf

http://www.enveurope.com/content/epub/s12302-015-0069-y.epub

http://www.enveurope.com/content/28/1/2/additional

Additional file 1: Table S1. Overview of ranges and mean or median values (underlined) of concentrations of microplastics (or, where specified, small plastic particles) in the marine environment based on Hidalgo-Ruz et al. [11] and selected recent publication. Table S2. Overview of ranges and mean or median values (underlined) of concentrations of microplastics (or, where specified, small plastic particles) in the freshwater environment. Table S3. Overview of effect concentrations derived in ecotoxicity tests with aquatic organisms exposed to microplastics.

Format: DOCX Size: 92KB Download file

http://www.enveurope.com/content/supplementary/s12302-015-0069-y-s1.docx

http://iopscience.iop.org/article/10.1088/1748-9326/10/12/124006

Erik van Sebille, Chris Wilcox, Laurent Lebreton, Nikolai Maximenko, Britta Denise Hardesty, Jan A van Franeker, Marcus Eriksen, David Siegel, Francois Galgani and Kara Lavender Law
A global inventory of small floating plastic debris
Environ. Res. Lett. 10 (2015) 124006
doi:10.1088/1748-9326/10/12/124006

Abstract
Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on the North Atlantic and North Pacific accumulation zones, with much sparser coverage elsewhere. Here, we use the largest dataset of microplastic measurements assembled to date to assess the confidence we can have in global estimates of microplastic abundance and mass. We use a rigorous statistical framework to standardize a global dataset of plastic marine debris measured using surface-trawling plankton nets and coupled this with three different ocean circulation models to spatially interpolate the observations. Our estimates show that the accumulated number of microplastic particles in 2014 ranges from 15 to 51 trillion particles, weighing between 93 and 236 thousand metric tons, which is only approximately 1% of global plastic waste estimated to enter the ocean in the year 2010. These estimates are larger than previous global estimates, but vary widely because the scarcity of data in most of the world ocean, differences in model formulations, and fundamental knowledge gaps in the sources, transformations and fates of microplastics in the ocean.

http://iopscience.iop.org/article/10.1088/1748-9326/10/12/124006/pdf

Supplementary data. (1.4 MB, pdf)

http://iopscience.iop.org/1748-9326/10/12/124006/media/erl124006_supdata.pdf

http://science.sciencemag.org/content/351/6269/aad2622

Colin N. Waters, Jan Zalasiewicz, Colin Summerhayes, Anthony D. Barnosky, Clément Poirier, Agnieszka Gałuszka, Alejandro Cearreta, Matt Edgeworth, Erle C. Ellis, Michael Ellis1, Catherine Jeandel, Reinhold Leinfelder, J. R. McNeill, Daniel deB. Richter, Will Steffen, James Syvitski, Davor Vidas, Michael Wagreich, Mark Williams, An Zhisheng, Jacques Grinevald, Eric Odada, Naomi Oreskes, Alexander P. Wolfe
The Anthropocene is functionally and stratigraphically distinct from the Holocene
Science  08 Jan 2016:
Vol. 351, Issue 6269, pp.
DOI: 10.1126/science.aad2622

Abstract
Human activity is leaving a pervasive and persistent signature on Earth. Vigorous debate continues about whether this warrants recognition as a new geologic time unit known as the Anthropocene. We review anthropogenic markers of functional changes in the Earth system through the stratigraphic record. The appearance of manufactured materials in sediments, including aluminum, plastics, and concrete, coincides with global spikes in fallout radionuclides and particulates from fossil fuel combustion. Carbon, nitrogen, and phosphorus cycles have been substantially modified over the past century. Rates of sea-level rise and the extent of human perturbation of the climate system exceed Late Holocene changes. Biotic changes include species invasions worldwide and accelerating rates of extinction. These combined signals render the Anthropocene stratigraphically distinct from the Holocene and earlier epochs.

http://www.globalgarbage.org.br/mailinglist/aad2622.pdf

, Earth’s oceans show decline in microscopic plant life, Marine Pollution Bulletin, Volume 100, Issue 1, 15 November 2015, Pages 1-4, ISSN 0025-326X, http://dx.doi.org/10.1016/j.marpolbul.2015.10.048.
(http://www.sciencedirect.com/science/article/pii/S0025326X15005718)

http://www.globalgarbage.org.br/mailinglist/S0025326X15005718.pdf

http://www.globalgarbage.org.br/mailinglist/Micro2016_2ndCircular.pdf

Lanzarote, January 14th 2016

SECOND CIRCULAR: CALL FOR ABSTARCTS AND SIDE EVENTS

We are pleased to invite the scientific community and stakeholders to MICRO 2016, an international conference that will be hosted in Lanzarote, Spain, 25 – 27 May 2016:

Fate and Impact of Microplastics in Marine Ecosystems: From the Coastline to the Open Sea

MICRO 2016 provides an opportunity to share available knowledge, fill in gaps, identify new questions and research needs, and develop commitments to operationalize solutions.

http://www.weforum.org/reports/the-new-plastics-economy-rethinking-the-future-of-plastics

The New Plastics Economy: Rethinking the future of plastics

Today nearly everyone, everywhere, every day comes into contact with plastics. Plastics have become the ubiquitous workhorse material of the modern economy. And yet, while delivering many benefits, the current plastics economy has drawbacks that are becoming more apparent by the day.

Significant economic value is lost after each use, and given the projected growth in consumption, by 2050 oceans are expected to contain more plastics than fish (by weight), and the entire plastics industry will consume 20% of total oil production and 15% of the annual carbon budget. How can we turn the challenges of our current plastics economy into a global opportunity for innovation and value capture, resulting in stronger economies and better environmental outcomes?

Published
Tuesday 19 January 2016

http://www3.weforum.org/docs/WEF_The_New_Plastics_Economy.pdf

http://www.weforum.org/events/world-economic-forum-annual-meeting-2016/sessions/rethinking-plastics

2016-01-22 09:15

Issue Briefing: Rethinking Plastics

Learn first-hand how systemic change can create a New Plastics Economy, turning the $80-$120 billion worth of plastic packaging that is burnt, buried or dumped into the environment each year into an opportunity.

Speakers: Ellen MacArthur, Dominic Kailash Nath Waughray, Oliver Cann, Jean-Louis Chaussade

Topics: Global Economy

http://www.ellenmacarthurfoundation.org/news/new-plastics-economy-report-offers-blueprint-to-design-a-circular-future-for-plastics

NEW PLASTICS ECONOMY REPORT OFFERS BLUEPRINT TO DESIGN A CIRCULAR FUTURE FOR PLASTICS

JANUARY 19, 2016

Applying circular economy principles to global plastic packaging flows could transform the plastics economy and drastically reduce negative externalities such as leakage into oceans, according to the latest report by the World Economic Forum and Ellen MacArthur Foundation, with analytical support from McKinsey & Company.

The New Plastics Economy: Rethinking the future of plastics provides for the first time a vision of a global economy in which plastics never become waste, and outlines concrete steps towards achieving the systemic shift needed. The report, financially supported by the MAVA Foundation, was produced as part of Project MainStream, a global, multi-industry initiative that aims to accelerate business-driven innovations to help scale the circular economy.

http://www.ellenmacarthurfoundation.org/publications/the-new-plastics-economy-rethinking-the-future-of-plastics

http://www.ellenmacarthurfoundation.org/assets/downloads/publications/EllenMacArthurFoundation_TheNewPlasticsEconomy_19012016.pdf

http://www.ellenmacarthurfoundation.org/news/the-new-plastics-economy-rethinking-the-future-of-plastics-infographics

THE NEW PLASTICS ECONOMY: RETHINKING THE FUTURE OF PLASTICS – DOWNLOAD THE INFOGRAPHICS

JANUARY 19, 2016

View and download key infographics from The New Plastics Economy: Rethinking the future of plastics report by the World Economic Forum, the Ellen MacArthur Foundation, and McKinsey & Company. Simply click on an image to download it.

http://www.ellenmacarthurfoundation.org/assets/downloads/EllenMacArthurFoundation_NewPlasticsEconomy_1_02.jpg

http://www.ellenmacarthurfoundation.org/assets/downloads/EllenMacArthurFoundation_NewPlasticsEconomy_1_06.jpg

http://www.ellenmacarthurfoundation.org/assets/downloads/EllenMacArthurFoundation_NewPlasticsEconomy_1_08.jpg

http://www.ellenmacarthurfoundation.org/assets/downloads/EllenMacArthurFoundation_NewPlasticsEconomy_1_10.jpg

http://www.ellenmacarthurfoundation.org/assets/downloads/EllenMacArthurFoundation_NewPlasticsEconomy_1_14.jpg

http://www.ellenmacarthurfoundation.org/assets/downloads/EllenMacArthurFoundation_NewPlasticsEconomy_1_16.jpg

http://www.ellenmacarthurfoundation.org/assets/downloads/EllenMacArthurFoundation_NewPlasticsEconomy_1_36.jpg

http://marinedebris.noaa.gov/about-us/2016-2020-strategic-plan

2016-2020 Strategic Plan

Marine debris is a pervasive problem that threatens our oceans and coastal environments. Since the inception of the NOAA Marine Debris Program in 2006, we have strived to combat this issue by finding solutions through research, removal and prevention efforts. We have had many accomplishments during this time, including funding important and innovative research projects, removing a significant amount of coastal debris, and reaching thousands of students, teachers, and communities to bring the issue of marine debris to the forefront.

There is still a long way to go to solve this problem and we need to be strategic about our future priorities, so we have refined our vision and developed a strategic plan to lead us into the future and help us succeed in continuing to combat marine debris in the coming years. The NOAA Marine Debris Program will continue to take action to help protect our important natural resources.

Take a look at our 2016-2020 Strategic Plan to see some of our goals for the future.

http://marinedebris.noaa.gov/sites/default/files/Strategic%20Plan%202016.pdf

http://marinedebris.noaa.gov/our-work/fiscal-year-2015-accomplishments-report

Fiscal Year 2015 Accomplishments Report

It was a busy year for the NOAA Marine Debris Program. Throughout 2015, we continued our important work funding removal projects around the country as well as our efforts to remove debris connected to the tsunami in Japan and Hurricane Sandy. The Program also worked to prevent future debris by engaging in education and outreach focusing on behavior change, including funding the development of new curriculum, supporting outreach to teens and teacher workshops, and working with recreational fishermen. This year, we were particularly proud of our “Trash Talk” videos, a six-part educational series created with NOAA Ocean Today, which were designed to raise awareness on the issue of marine debris in a fun, visual, interesting way.

In 2015, we strove to continue to be at the forefront of the marine debris issue. We collaborated with various partners to develop regional marine debris plans and to create marine debris exhibits at visitor centers around the nation. We supported research to better understand the impacts and distribution of marine debris, including investigating the concentration of microplastics in the Gulf of Alaska and the Chesapeake Bay. In addition, we participated in the global marine debris discussion by participating in the G7 Summit and acting as Chair of the UN’s Environment Programme’s Global Partnership on Marine Litter. Looking to the future, we developed a new NOAA Marine Debris Program Strategic Plan, which outlines the Program’s goals and strategies for the coming years.

We’re proud of our efforts over the past year and are excited to present the NOAA Marine Debris Program’s 2015 Accomplishments Report, which highlights some of our major achievements over fiscal year 2015.

http://marinedebris.noaa.gov/sites/default/files/FY15%20Accomplishments%20Report.pdf

https://eia-international.org/time-to-turn-the-tide-of-plastic-waste-choking-our-oceans

Time to turn the tide of plastic waste choking our oceans

5th October, 2015

As a mandatory 5p charge for plastic bags comes into effect in England today, EIA releases a new report calling on governments, industry, retailers and consumers alike to help end the appalling damage plastic waste inflicts on marine environments.

Lost at Sea – The urgent need to tackle marine litter urges a focus on cutting single-use plastics, removing plastics from down-the-drain products and embracing circular economy principles to dramatically reduce and better recycle plastic products and packaging.

http://eia-global.org/images/uploads/EIA_Lost_at_Sea_-_FINAL.pdf

http://www.theguardian.com/environment/2016/jan/19/collecting-plastic-waste-near-coasts-is-most-effective-clean-up-method

Collecting plastic waste near coasts ‘is most effective clean-up method’

Analysis finds that placing plastic collectors near coasts would remove 31% of microplastics, versus 1% if they were all in the ‘Great Pacific Garbage patch’

Rebecca Smithers
Tuesday 19 January 2016 00.01 GMT

Dredging plastic waste from coastal locations rather than deep in the oceans is the the most efficient way to clean it up and avoid damaging global ecosystems, according to new analysis.

Floating plastic waste ranging from bags, bottles and caps, fibres and ‘microbeads’ wash out into the oceans from rivers and sewers, while larger plastics are broken down into smaller fragments that can last for hundreds to thousands of years. Fragments of all sizes are swallowed by marine life and enter the food chain, disrupting fragile ecosystems.

Researchers from Imperial College looked at the so-called Great Pacific garbage patch – an area of open ocean in the North Pacific – which has an unusually large area of microplastics. The patch is enclosed by ocean currents that concentrate the plastics into an area estimated to be larger than twice the size of the United Kingdom.

http://www.oceanconservancy.org/who-we-are/newsroom/2016/entangled-eaten.html

Entangled, Eaten, Contaminated: Ocean Conservancy and Commonwealth Scientific and Industrial Research Organization (CSIRO) Publish First Comprehensive Impact Assessment of Trash on Marine Wildlife

Study highlights critical need to ramp up local to global action to stem the tide of plastics into our ocean

Media Contact:

Julia Roberson
jroberson@oceanconservancy.org
202.351.0476

(Washington, D.C. – January 12, 2016) – A first-of-its-kind analysis of the impact of 20 ocean trash items on seabirds, marine mammals and sea turtles conducted using expert elicitation was published today in Marine Policy by Ocean Conservancy and Commonwealth Scientific and Industrial Research Organization (CSIRO). Until now, the impact of marine debris items, such as plastic bags and fishing gear, to populations of these animals has been far less clear.

An analysis based on a survey of 274 experts representing 19 fields of study assigned scores for entanglement, ingestions and contamination on a shortlist of items culled from 30 years of data from Ocean Conservancy’s International Coastal Cleanup. The study found that a wide variety of items pose threats to marine wildlife through entanglement, ingestion, or contamination, suggesting that a comprehensive approach to preventing plastics from entering the ocean is vitally needed. Among the items, abandoned and lost fishing gear like nets, fishing line and buoys were found to pose the greatest overall threat to marine wildlife, primarily because of entanglement. Plastic bags emerged as the second most harmful item as they are often confused for food by marine mammals. Smaller items like balloons were also found to be harmful.

http://blog.oceanconservancy.org/2016/01/12/entangled-eaten-contaminated/

Entangled, Eaten, Contaminated

Posted On January 12, 2016 by George Leonard

A comprehensive assessment of trash on marine wildlife

There is a vast sea of trash in our oceans. For the first time, we now have a comprehensive picture of the toll it is taking on seabirds, sea turtles and marine mammals.

A new study in Marine Policy by scientists at Ocean Conservancy and Commonwealth Scientific and Industrial Research Organisation (CSIRO) mapped impacts ranging from entanglement, ingestion and chemical contamination of the 20 most commonly found ocean debris like fishing gear, balloons, plastic bottles and bags and a range of other plastic garbage found regularly in the ocean. Our research was based on elicitation, a widely-used technique to rigorously quantify the professional judgement of a community of experts, representing 19 fields of study.

http://blog.oceanconservancy.org/2016/01/12/how-dangerous-is-ocean-plastic/

How Dangerous is Ocean Plastic? Insights From Global Experts on the Greatest Threat to Marine Wildlife

Posted On January 12, 2016 by Nick Mallos

By George H. Leonard, PhD and Nicholas J. Mallos MEM

Over the course of the 30-year history of the International Coastal Cleanup, volunteers have removed over 200 million items from beaches and waterways around the world.  The top-ten list of items removed includes items like plastics bottles, plastic bottle caps, aluminum cans, cigarette butts, derelict fishing gear and a range of disposable plastic goods and food packaging. The scientific literature is replete with anecdotal information of marine wildlife impacted by these marine debris items. Indeed, over 690 species (from the smallest of plankton to the largest of whales) have been documented to be negatively impacted by marine debris.

But until now, the consequence of different marine debris items to populations of these animals – and the mechanism by which they do so – has been far less clear. Experimentally testing the impact of plastic items to whole populations of marine wildlife is technically challenging (if not impossible) and for species that are of threatened or endangered status, legally prohibited as well as morally questionable. But we have just published a paper in Marine Policy along with our colleagues Drs. Chris Wilcox and Denise Hardesty at Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia that uses elicitation techniques to overcome these challenges. Our analysis provides key insights into the relative threat of different debris items to a healthy ocean that should provide additional impetus to decision makers to tackle this growing problem.

http://www.theguardian.com/environment/2016/jan/07/human-impact-has-pushed-earth-into-the-anthropocene-scientists-say

Human impact has pushed Earth into the Anthropocene, scientists say

New study provides one of the strongest cases yet that the planet has entered a new geological epoch

Adam Vaughan
@adamvaughan_uk
Thursday 7 January 2016 19.00 GMT

There is now compelling evidence to show that humanity’s impact on the Earth’s atmosphere, oceans and wildlife has pushed the world into a new geological epoch, according to a group of scientists.

The question of whether humans’ combined environmental impact has tipped the planet into an “Anthropocene” – ending the current Holocene which began around 12,000 years ago – will be put to the geological body that formally approves such time divisions later this year.

The new study provides one of the strongest cases yet that from the amount of concrete mankind uses in building to the amount of plastic rubbish dumped in the oceans, Earth has entered a new geological epoch.

“We could be looking here at a stepchange from one world to another that justifies being called an epoch,” said Dr Colin Waters, principal geologist at the British Geological Survey and an author on the study published in Science on Thursday.

“What this paper does is to say the changes are as big as those that happened at the end of the last ice age . This is a big deal.”

http://www.portofamsterdam.com/Eng/Free-disposal-of-clean-plastic-waste-in-Rotterdam-and-Amsterdam-ports.html

Free disposal of clean plastic waste in Rotterdam and Amsterdam ports

Thursday, December 24, 2015

Sea-going vessels in the ports of Rotterdam Rijnmond and the North Sea Canal Area can dispose of plastic shipping waste free of charge on an unlimited basis starting 1 January 2016. This has been agreed between the port authorities of Rotterdam and Amsterdam and the waste collection companies. The waste must be segregated and clean at the time of disposal.

The new campaign is part of the Green Deal for the Ship Waste Chain that Minister Schultz van Haegen of Infrastructure and Environment signed with the industry on 10 September 2014. Signatories to the Green Deal include Port of Amsterdam, Zeeland Seaports, Groningen Seaports, Port of Den Helder, NVVS (ship suppliers), the Royal Association of Netherlands Ship Owners (KVNR), ship waste collection companies, ILT and The North Sea Foundation.

Nam Ngoc Phuong, Aurore Zalouk-Vergnoux, Laurence Poirier, Abderrahmane Kamari, Amélie Châtel, Catherine Mouneyrac, Fabienne Lagarde, Is there any consistency between the microplastics found in the field and those used in laboratory experiments?, Environmental Pollution, Volume 211, April 2016, Pages 111-123, ISSN 0269-7491, http://dx.doi.org/10.1016/j.envpol.2015.12.035.
(http://www.sciencedirect.com/science/article/pii/S0269749115302499)
Abstract: The ubiquitous presence and persistency of microplastics (MPs) in aquatic environments are of particular concern since they represent an increasing threat to marine organisms and ecosystems. Great differences of concentrations and/or quantities in field samples have been observed depending on geographical location around the world. The main types reported have been polyethylene, polypropylene, and polystyrene. The presence of MPs in marine wildlife has been shown in many studies focusing on ingestion and accumulation in different tissues, whereas studies of the biological effects of MPs in the field are scarce. If the nature and abundance/concentrations of MPs have not been systematically determined in field samples, this is due to the fact that the identification of MPs from environmental samples requires mastery and execution of several steps and techniques. For this reason and due to differences in sampling techniques and sample preparation, it remains difficult to compare the published studies.

Most laboratory experiments have been performed with MP concentrations of a higher order of magnitude than those found in the field. Consequently, the ingestion and associated effects observed in exposed organisms have corresponded to great contaminant stress, which does not mimic the natural environment. Medium contaminations are produced with only one type of polymer of a precise sizes and homogenous shape whereas the MPs present in the field are known to be a mix of many types, sizes and shapes of plastic. Moreover, MPs originating in marine environments can be colonized by organisms and constitute the sorption support for many organic compounds present in environment that are not easily reproducible in laboratory. Determination of the mechanical and chemical effects of MPs on organisms is still a challenging area of research. Among the potential chemical effects it is necessary to differentiate those related to polymer properties from those due to the sorption/desorption of organic compounds.
Keywords: Microplastics; Field samples; Laboratory exposures; Ingestion; Biological effects

http://www.globalgarbage.org.br/mailinglist/S0269749115302499.pdf

J.P.G.L. Frias, J. Gago, V. Otero, P. Sobral, Microplastics in coastal sediments from Southern Portuguese shelf waters, Marine Environmental Research, Volume 114, March 2016, Pages 24-30, ISSN 0141-1136, http://dx.doi.org/10.1016/j.marenvres.2015.12.006.
(http://www.sciencedirect.com/science/article/pii/S0141113615300866)
Abstract: Microplastics are well-documented pollutants in the marine environment that result from fragmentation of larger plastic items. Due to their long chemical chains, they can remain in the environment for long periods of time. It is estimated that the vast majority (80%) of marine litter derives from land sources and that 70% will sink and remain at the bottom of the ocean. Microplastics that result from fragmentation of larger pieces of plastic are common to be found in beaches and in the water surface. The most common microplastics are pellets, fragments and fibres.

This work provides original data of the presence of microplastics in coastal sediments from Southern Portuguese shelf waters, reporting on microplastic concentration and polymer types.

Microplastic particles were found in nearly 56% of sediment samples, accounting a total of 31 particles in 27 samples. The vast majority were microfibers (25), identified as rayon fibres, and fragments (6) identified as polypropylene, through infrared spectroscopy (μ-FTIR). The concentration and polymer type data is consistent with other relevant studies and reports worldwide.
Keywords: Marine litter; Microplastics; FTIR; MSFD; Algarve; Portugal

http://www.globalgarbage.org.br/mailinglist/S0141113615300866.pdf

Hindrik Bouwman, Steven W. Evans, Nik Cole, Nee Sun Choong Kwet Yive, Henrik Kylin, The flip-or-flop boutique: Marine debris on the shores of St Brandon’s rock, an isolated tropical atoll in the Indian Ocean, Marine Environmental Research, Volume 114, March 2016, Pages 58-64, ISSN 0141-1136, http://dx.doi.org/10.1016/j.marenvres.2015.12.013.
(http://www.sciencedirect.com/science/article/pii/S0141113615300921)
Abstract: Isolated coral atolls are not immune from marine debris accumulation. We identified Southeast Asia, the Indian sub-continent, and the countries on the Arabian Sea as most probable source areas of 50 000 items on the shores of St. Brandon’s Rock (SBR), Indian Ocean. 79% of the debris was plastics. Flip-flops, energy drink bottles, and compact fluorescent lights (CFLs) were notable item types. The density of debris (0.74 m−1 shore length) is comparable to similar islands but less than mainland sites. Intact CFLs suggests product-facilitated long-range transport of mercury. We suspect that aggregated marine debris, scavenged by the islands from currents and gyres, could re-concentrate pollutants. SBR islets accumulated debris types in different proportions suggesting that many factors act variably on different debris types. Regular cleaning of selected islets will take care of most of the accumulated debris and may improve the ecology and tourism potential. However, arrangements and logistics require more study.
Keywords: Plastic; Polyurethane foam; Mercury; Management; Wreck; Compact fluorescent light

http://www.globalgarbage.org.br/mailinglist/S0141113615300921.pdf

M. Moriarty, D. Pedreschi, D. Stokes, L. Dransfeld, D.G. Reid, Spatial and temporal analysis of litter in the Celtic Sea from Groundfish Survey data: Lessons for monitoring, Marine Pollution Bulletin, Available online 13 January 2016, ISSN 0025-326X,http://dx.doi.org/10.1016/j.marpolbul.2015.12.019.
(http://www.sciencedirect.com/science/article/pii/S0025326X15302241)
Abstract: The Marine Strategy Framework Directive requires EU Member States to sample and monitor marine litter. Criteria for sampling and detecting spatial and/or temporal variation in the amount of litter present have been developed and initiated throughout Europe. These include implementing standardised sampling and recording methods to enable cross-comparison and consistency between neighbours. Parameters of interest include; litter occurrence, composition, distribution and source. This paper highlights the litter-related initiatives occurring in Irish waters; presents an offshore benthic litter sampling series; provides a power analysis to determine trend detection thresholds; identifies areas and sources of litter; and proposes improvements to meet reporting obligations. Litter was found to be distributed throughout Irish waters with highest occurrences in the Celtic Sea. Over 50% of litter encountered was attributed to fishing activities: however only a small proportion of the variability in litter occurrence could be explained by spatial patterns in fishing effort. Issues in implementing standardised protocol were observed and addressed.
Keywords: Litter; Fishing; Celtic Sea; MSFD; Geostatistical analysis; Power analysis

http://www.globalgarbage.org.br/mailinglist/S0025326X15302241_In_Press_Corrected_Proof.pdf

Note to users:
Corrected proofs are Articles in Press that contain the authors’ corrections. Final citation details, e.g., volume and/or issue number, publication year and page numbers, still need to be added and the text might change before final publication.

Although corrected proofs do not have all bibliographic details available yet, they can already be cited using the year of online publication and the DOI , as follows: author(s), article title, Publication (year), DOI. Please consult the journal’s reference style for the exact appearance of these elements, abbreviation of journal names and use of punctuation.

When the final article is assigned to volumes/issues of the Publication, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues of the Publication. The date the article was first made available online will be carried over.

Alice Nauendorf, Stefan Krause, Nikolaus K. Bigalke, Elena V. Gorb, Stanislav N. Gorb, Matthias Haeckel, Martin Wahl, Tina Treude, Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments, Marine Pollution Bulletin, Available online 12 January 2016, ISSN 0025-326X, http://dx.doi.org/10.1016/j.marpolbul.2015.12.024.
(http://www.sciencedirect.com/science/article/pii/S0025326X15302277)
Abstract: To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material.
Keywords: Biodegradation; Biofilm; Microorganisms; Carrier bag; Compostable; Eckernförde Bay

http://www.globalgarbage.org.br/mailinglist/S0025326X15302277_In_Press_Corrected_Proof.pdf

S. Liubartseva, G. Coppini, R. Lecci, S. Creti, Regional approach to modeling the transport of floating plastic debris in the Adriatic Sea, Marine Pollution Bulletin, Available online 8 January 2016, ISSN 0025-326X, http://dx.doi.org/10.1016/j.marpolbul.2015.12.031.
(http://www.sciencedirect.com/science/article/pii/S0025326X15302356)
Abstract: Sea surface concentrations of plastics and their fluxes onto coastlines are simulated over 2009–2015. Calculations incorporate combinations of terrestrial and maritime litter inputs, the Lagrangian model MEDSLIK-II forced by AFS ocean current simulations, and ECMWF wind analyses. With a relatively short particle half-life of 43.7 days, the Adriatic Sea is defined as a highly dissipative basin where the shoreline is, by construction, the main sink of floating debris. Our model results show that the coastline of the Po Delta receives a plastic flux of approximately 70 kg(km day)-1. The most polluted sea surface area (> 10 g km-2 floating debris) is represented by an elongated band shifted to the Italian coastline and narrowed from northwest to southeast. Evident seasonality is found in the calculated plastic concentration fields and the coastline fluxes. Complex source–receptor relationships among the basin’s subregions are quantified in impact matrices.
Keywords: Plastic debris inputs; Lagrangian model; Markov chain; Plastic fluxes onto coastline; Impact matrices

http://www.globalgarbage.org.br/mailinglist/S0025326X15302356_In_Press_Corrected_Proof.pdf

Steve A. Carr, Jin Liu, Arnold G. Tesoro, Transport and Fate of Microplastic Particles in Wastewater Treatment Plants, Water Research, Available online 7 January 2016, ISSN 0043-1354, http://dx.doi.org/10.1016/j.watres.2016.01.002.
(http://www.sciencedirect.com/science/article/pii/S0043135416300021)
Abstract: Municipal wastewater treatment plants (WWTPs) are frequently suspected as significant point sources or conduits of microplastics to the environment. To directly investigate these suspicions, effluent discharges from seven tertiary plants and one secondary plant in Southern California were studied. The study also looked at influent loads, particle size/type, conveyance, and removal at these wastewater treatment facilities. Over 0.189 million liters of effluent at each of the seven tertiary plants were filtered using an assembled stack of sieves with mesh sizes between 400 and 45 μm. Additionally, the surface of 28.4 million liters of final effluent at three tertiary plants was skimmed using a 125 μm filtering assembly. The results suggest that tertiary effluent is not a significant source of microplastics and that these plastic pollutants are effectively removed during the skimming and settling treatment processes. However, at a downstream secondary plant, an average of one micro-particle in every 1.14 thousand liters of final effluent was counted. The majority of microplastics identified in this study had a profile (color, shape, and size) similar to the blue polyethylene particles present in toothpaste formulations. Existing treatment processes were determined to be very effective for removal of microplastic contaminants entering typical municipal WWTPs.
Keywords: Microplastic pollutants; wastewater treatment; large-volume sampling; effluent discharge; cosmetic polyethylene; surface filtering

Note to users:
Accepted manuscripts are Articles in Press that have been peer reviewed and accepted for publication by the Editorial Board of this publication. They have not yet been copy edited and/or formatted in the publication house style, and may not yet have the full ScienceDirect functionality, e.g., supplementary files may still need to be added, links to references may not resolve yet etc. The text could still change before final publication.

Although accepted manuscripts do not have all bibliographic details available yet, they can already be cited using the year of online publication and the DOI, as follows: author(s), article title, Publication (year), DOI. Please consult the journal’s reference style for the exact appearance of these elements, abbreviation of journal names and use of punctuation.

When the final article is assigned to volumes/issues of the Publication, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues of the Publication. The date the article was first made available online will be carried over.

http://www.globalgarbage.org.br/mailinglist/S0043135416300021_In_Press_Accepted_Manuscript.pdf

Lídia Nicolau, Ana Marçalo, Marisa Ferreira, Sara Sá, José Vingada, Catarina Eira, Ingestion of marine litter by loggerhead sea turtles, Caretta caretta, in Portuguese continental waters, Marine Pollution Bulletin, Available online 4 January 2016, ISSN 0025-326X,http://dx.doi.org/10.1016/j.marpolbul.2015.12.021.
(http://www.sciencedirect.com/science/article/pii/S0025326X15302228)
Abstract: The accumulation of litter in marine and coastal environments is a major threat to marine life. Data on marine litter in the gastrointestinal tract of stranded loggerhead turtles, Caretta caretta, found along the Portuguese continental coast was presented. Out of the 95 analysed loggerheads, litter was present in 56 individuals (59.0%) and most had less than 10 litter items (76.8%) and less than 5 g (dm) (96.8%). Plastic was the main litter category (frequency of occurrence = 56.8%), while sheet (45.3%) was the most relevant plastic sub-category. There was no influence of loggerhead stranding season, cause of stranding or size on the amount of litter ingested (mean number and dry mass of litter items per turtle). The high ingested litter occurrence frequency in this study supports the use of the loggerhead turtle as a suitable tool to monitor marine litter trends, as required by the European Marine Strategy Framework Directive.
Keywords: Marine turtles; Plastic; Gut content analysis; Pollution; Marine Strategy Framework Directive

http://www.globalgarbage.org.br/mailinglist/S0025326X15302228_In_Press_Corrected_Proof.pdf

Daniele de A. Miranda, Gustavo Freire de Carvalho-Souza, Are we eating plastic-ingesting fish?, Marine Pollution Bulletin, Available online 4 January 2016, ISSN 0025-326X, http://dx.doi.org/10.1016/j.marpolbul.2015.12.035.
(http://www.sciencedirect.com/science/article/pii/S0025326X15302393)
Abstract: Yes, we are eating plastic-ingesting fish. A baseline assessment of plastic pellet ingestion by two species of important edible fish caught along the eastern coast of Brazil is described. The rate of plastic ingestion by king mackerel (Scomberomorus cavalla) was quite high (62.5%), followed by the Brazilian sharpnose shark (Rhizoprionodon lalandii, 33%). From 2 to 6 plastic resin pellets were encountered in the stomachs of each fish, with sizes of from 1 to 5 mm, and with colors ranging from clear to white and yellowish. Ecological and health-related implications are discussed and the potential for transferring these materials through the food-chain are addressed. Further research will be needed of other species harvested for human consumption.
Keywords: Marine debris; Pellets; Predator fishes; Artisanal fisheries

http://www.globalgarbage.org.br/mailinglist/S0025326X15302393_In_Press_Corrected_Proof.pdf

Dennis Brennecke, Bernardo Duarte, Filipa Paiva, Isabel Caçador, João Canning-Clode, Microplastics as vector for heavy metal contamination from the marine environment, Estuarine, Coastal and Shelf Science, Available online 4 January 2016, ISSN 0272-7714,http://dx.doi.org/10.1016/j.ecss.2015.12.003.
(http://www.sciencedirect.com/science/article/pii/S027277141530158X)
Abstract: The permanent presence of microplastics in the marine environment is considered a global threat to several marine animals. Heavy metals and microplastics are typically included in two different classes of pollutants but the interaction between these two stressors is poorly understood.

During 14 days of experimental manipulation, we examined the adsorption of two heavy metals, copper (Cu) and zinc (Zn), leached from an antifouling paint to virgin polystyrene (PS) beads and aged polyvinyl chloride (PVC) fragments in seawater. We demonstrated that heavy metals were released from the antifouling paint to the water and both microplastic types adsorbed the two heavy metals. This adsorption kinetics was described using partition coefficients and mathematical models. Partition coefficients between pellets and water ranged between 650 and 850 for Cu on PS and PVC, respectively. The adsorption of Cu was significantly greater in PVC fragments than in PS, probably due to higher surface area and polarity of PVC. Concentrations of Cu and Zn increased significantly on PVC and PS over the course of the experiment with the exception of Zn on PS. As a result, we show a significant interaction between these types of microplastics and heavy metals, which can have implications for marine life and the environment. These results strongly support recent findings where plastics can play a key role as vectors for heavy metal ions in the marine system. Finally, our findings highlight the importance of monitoring marine litter and heavy metals, mainly associated with antifouling paints, particularly in the framework of the Marine Strategy Framework Directive (MSFD).
Keywords: Heavy metals; Microplastics; Adsorption; Antifouling substances; Polystyrene; Polyvinyl chloride

http://www.globalgarbage.org.br/mailinglist/S027277141530158X_In_Press_Corrected_Proof.pdf

Bum Gun Kwon, Koshiro Koizumi, Seon-Yong Chung, Yoichi Kodera, Jong-Oh Kim, Katsuhiko Saido, Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution, Journal of Hazardous Materials, Volume 300, 30 December 2015, Pages 359-367, ISSN 0304-3894, http://dx.doi.org/10.1016/j.jhazmat.2015.07.039.
(http://www.sciencedirect.com/science/article/pii/S0304389415005762)
Abstract: Polystyrene (PS) plastic marine pollution is an environmental concern. However, a reliable and objective assessment of the scope of this problem, which can lead to persistent organic contaminants, has yet to be performed. Here, we show that anthropogenic styrene oligomers (SOs), a possible indicator of PS pollution in the ocean, are found globally at concentrations that are higher than those expected based on the stability of PS. SOs appear to persist to varying degrees in the seawater and sand samples collected from beaches around the world. The most persistent forms are styrene monomer, styrene dimer, and styrene trimer. Sand samples from beaches, which are commonly recreation sites, are particularly polluted with these high SOs concentrations. This finding is of interest from both scientific and public perspectives because SOs may pose potential long-term risks to the environment in combination with other endocrine disrupting chemicals. From SOs monitoring results, this study proposes a flow diagram for SOs leaching from PS cycle. Using this flow diagram, we conclude that SOs are global contaminants in sandy beaches around the world due to their broad spatial distribution.
Keywords: Styrene oligomers; Polystyrene; Plastic pollution; Leaching; Persistent

http://www.globalgarbage.org.br/mailinglist/S0304389415005762.pdf

Thomas C. Erren, J. Valérie Groß, Frank Steffany, V. Benno Meyer-Rochow, “Plastic ocean”: What about cancer?, Environmental Pollution, Volume 207, December 2015, Pages 436-437, ISSN 0269-7491, http://dx.doi.org/10.1016/j.envpol.2015.05.025.
(http://www.sciencedirect.com/science/article/pii/S0269749115002596)
Keywords: Plastic; Synthetic polymer; Styrene; Vinyl chloride; Bisphenol A; IARC; Toxicology; Cancer; Public health; Fetal exposure; Neonatal exposure

http://www.globalgarbage.org.br/mailinglist/S0269749115002596.pdf

, Grace silica gels provide an alternative to microplastic exfoliating agents for personal care industry, Focus on Surfactants, Volume 2015, Issue 12, December 2015, Page 4, ISSN 1351-4210, http://dx.doi.org/10.1016/j.fos.2015.11.016.
(http://www.sciencedirect.com/science/article/pii/S1351421015003376)

http://www.globalgarbage.org.br/mailinglist/S1351421015003376.pdf

http://grace.com/en-us/Pages/Products.aspx#syntheticsilicas

https://grace.com/personal-care/en-US/exfoliants

https://grace.com/personal-care/en-US/Documents/Grace%20Exfoliating%20Silicas_TI_5_2015.pdf

Cristina Munari, Corinne Corbau, Umberto Simeoni, Michele Mistri, Marine litter on Mediterranean shores: Analysis of composition, spatial distribution and sources in north-western Adriatic beaches, Waste Management, Available online 22 December 2015, ISSN 0956-053X,http://dx.doi.org/10.1016/j.wasman.2015.12.010.
(http://www.sciencedirect.com/science/article/pii/S0956053X15302440)
Abstract: Marine litter is one descriptor in the EU Marine Strategy Framework Directive (MSFD). This study provides the first account of an MSFD indicator (Trends in the amount of litter deposited on coastlines) for the north-western Adriatic. Five beaches were sampled in 2015. Plastic dominated in terms of abundance, followed by paper and other groups. The average density was 0.2 litter items m−2, but at one beach it raised to 0.57 items m−2. The major categories were cigarette butts, unrecognizable plastic pieces, bottle caps, and others. The majority of marine litter came from land-based sources: shoreline and recreational activities, smoke-related activities and dumping. Sea-based sources contributed for less. The abundance and distribution of litter seemed to be particularly influenced by beach users, reflecting inadequate disposal practices. The solution to these problems involves implementation and enforcement of local educational and management policies.
Keywords: Marine litter; Marine Strategy Framework Directive; In situ deposition; Adriatic Sea

http://www.globalgarbage.org.br/mailinglist/S0956053X15302440_In_Press_Corrected_Proof.pdf

http://onlinelibrary.wiley.com/doi/10.1890/150017/full

http://onlinelibrary.wiley.com/wol1/doi/10.1890/150017/abstract

Amaral-Zettler, L. A., Zettler, E. R., Slikas, B., Boyd, G. D., Melvin, D. W., Morrall, C. E., Proskurowski, G. and Mincer, T. J. (2015), The biogeography of the Plastisphere: implications for policy. Frontiers in Ecology and the E, 13: 541–546. doi: 10.1890/150017

Abstract
Microplastics (particles less than 5 mm) numerically dominate marine debris and occur from coastal waters to mid-ocean gyres, where surface circulation concentrates them. Given the prevalence of plastic marine debris (PMD) and the rise in plastic production, the impacts of plastic on marine ecosystems will likely increase. Microscopic life (the “Plastisphere”) thrives on these tiny floating “islands” of debris and can be transported long distances. Using next-generation DNA sequencing, we characterized bacterial communities from water and plastic samples from the North Pacific and North Atlantic subtropical gyres to determine whether the composition of different Plastisphere communities reflects their biogeographic origins. We found that these communities differed between ocean basins – and to a lesser extent between polymer types – and displayed latitudinal gradients in species richness. Our research reveals some of the impacts of microplastics on marine biodiversity, demonstrates that the effects and fate of PMD may vary considerably in different parts of the global ocean, and suggests that PMD mitigation will require regional management efforts.

http://www.globalgarbage.org.br/mailinglist/150017.pdf

http://www.globalgarbage.org.br/mailinglist/150017_Supplemental_information.pdf

http://pubs.acs.org/doi/abs/10.1021/acs.est.5b04663

Dorte Herzke, Tycho Anker-Nilssen, Therese Haugdahl Nøst, Arntraut Götsch, Signe Christensen-Dalsgaard, Magdalene Langset, Kirstin Fangel, and Albert A. Koelmans
Negligible Impact of Ingested Microplastics on Tissue Concentrations of Persistent Organic Pollutants in Northern Fulmars off Coastal Norway
Environ. Sci. Technol., Article ASAP
DOI: 10.1021/acs.est.5b04663
Publication Date (Web): December 22, 2015

Abstract
The northern fulmar (Fulmarus glacialis) is defined as an indicator species of plastic pollution by the Oslo-Paris Convention for the North-East Atlantic, but few data exist for fulmars from Norway. Moreover, the relationship between uptake of plastic and pollutants in seabirds is poorly understood. We analyzed samples of fulmars from Norwegian waters and compared the POP concentrations in their liver and muscle tissue with the corresponding concentrations in the loads of ingested plastic in their stomachs, grouped as “no”, “medium” (0.01–0.21 g; 1–14 pieces of plastic), or “high” (0.11–0.59 g; 15–106 pieces of plastic). POP concentrations in the plastic did not differ significantly between the high and medium plastic ingestion group for sumPCBs, sumDDTs, and sumPBDEs. By combining correlations among POP concentrations, differences in tissue concentrations of POPs between plastic ingestion subgroups, fugacity calculations, and bioaccumulation modeling, we showed that plastic is more likely to act as a passive sampler than as a vector of POPs, thus reflecting the POP profiles of simultaneously ingested prey.

http://pubs.acs.org/doi/pdfplus/10.1021/acs.est.5b04663

http://pubs.acs.org/doi/pdf/10.1021/acs.est.5b04663

http://pubs.acs.org/doi/suppl/10.1021/acs.est.5b04663

Supporting Information
Negligible Impact of Ingested Microplastics on Tissue Concentrations of Persistent Organic Pollutants in Northern Fulmars off Coastal Norway

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.5b04663.

Text, figures, and tables addressing (i) the model parameters, least-squares used in the modeling approach, (ii) illustrating the further validation of the model, (iii) giving loss rate constants (kloss) estimated for PCBs, based on bioaccumulation data without plastic ingested, and (iv) presenting the Muscle–Plastic Fugacity ratios for selected individual birds. (PDF)

http://pubs.acs.org/doi/suppl/10.1021/acs.est.5b04663/suppl_file/es5b04663_si_001.pdf

http://pubs.acs.org/doi/abs/10.1021/acs.est.5b02781

Heng-Xiang Li, Gordon J. Getzinger, P. Lee Ferguson, Beatriz Orihuela, Mei Zhu, and Daniel Rittschof
Effects of Toxic Leachate from Commercial Plastics on Larval Survival and Settlement of the Barnacle Amphibalanus amphitrite
Environ. Sci. Technol., Article ASAP
DOI: 10.1021/acs.est.5b02781
Publication Date (Web): December 14, 2015

Abstract
Plastic pollution represents a major and growing global problem. It is well-known that plastics are a source of chemical contaminants to the aquatic environment and provide novel habitats for marine organisms. The present study quantified the impacts of plastic leachates from the seven categories of recyclable plastics on larval survival and settlement of barnacle Amphibalanus (=Balanus) amphitrite. Leachates from plastics significantly increased barnacle nauplii mortality at the highest tested concentrations (0.10 and 0.50 m2/L). Hydrophobicity (measured as surface energy) was positively correlated with mortality indicating that plastic surface chemistry may be an important factor in the effects of plastics on sessile organisms. Plastic leachates significantly inhibited barnacle cyprids settlement on glass at all tested concentrations. Settlement on plastic surfaces was significantly inhibited after 24 and 48 h, but settlement was not significantly inhibited compared to the controls for some plastics after 72–96 h. In 24 h exposure to seawater, we found larval toxicity and inhibition of settlement with all seven categories of recyclable commercial plastics. Chemical analysis revealed a complex mixture of substances released in plastic leachates. Leaching of toxic compounds from all plastics should be considered when assessing the risks of plastic pollution.

http://www.globalgarbage.org.br/mailinglist/5b02781_Article_ASAP.pdf

http://pubs.acs.org/doi/suppl/10.1021/acs.est.5b02781

Supporting Information
Effects of Toxic Leachate from Commercial Plastics on Larval Survival and Settlement of the Barnacle Amphibalanus amphitrite

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.5b02781.

Information on the sources of new plastic products (Table S1). The water quality measured before and after leaching (Table S2). Gradient elution conditions for HPLC-HR/AM MS (Table S3). The nauplii mortality and cyprid settlement in different leachates from glass coverslip, polystyrene Petri dish, and wax (Figure S1) (PDF)

http://pubs.acs.org/doi/suppl/10.1021/acs.est.5b02781/suppl_file/es5b02781_si_001.pdf

http://pubs.acs.org/doi/abs/10.1021/acs.est.5b02431

Lars Gutow, Antonia Eckerlebe, Luis Giménez, and Reinhard Saborowski
Experimental Evaluation of Seaweeds as a Vector for Microplastics into Marine Food Webs
Environ. Sci. Technol., Article ASAP
DOI: 10.1021/acs.est.5b02431
Publication Date (Web): December 11, 2015

Abstract
The ingestion of microplastics has been shown for a great variety of marine organisms. However, benthic marine mesoherbivores such as the common periwinkle Littorina littorea have been largely disregarded in studies about the effects of microplastics on the marine biota, probably because the pathway for microplastics to this functional group of organisms was not obvious. In laboratory experiments we showed that the seaweed Fucus vesiculosus retains suspended microplastics on its surface. The numbers of microplastics that adhered to the algae correlated with the concentrations of suspended particles in the water. In choice feeding assays L. littorea did not distinguish between algae with adherent microplastics and clean algae without microplastics, indicating that the snails do not recognize solid nonfood particles in the submillimeter size range as deleterious. In periwinkles that were feeding on contaminated algae, microplastics were found in the stomach and in the gut. However, no microplastics were found in the midgut gland, which is the principle digestive organ of gastropods. Microplastics in the fecal pellets of the periwinkles indicate that the particles do not accumulate rapidly inside the animals but are mostly released with the feces. Our results provide the first evidence that seaweeds may represent an efficient pathway for microplastics from the water to marine benthic herbivores.

http://www.globalgarbage.org.br/mailinglist/5b02431_Article_ASAP.pdf

http://pubs.acs.org/doi/suppl/10.1021/acs.est.5b02431

Supporting Information
Experimental Evaluation of Seaweeds as a Vector for Microplastics into Marine Food Webs

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.5b02431.

Figures showing the distribution of standardized errors across microplastic concentration levels and different types of microplastics and contamination and decontamination treatments. (PDF)

http://pubs.acs.org/doi/suppl/10.1021/acs.est.5b02431/suppl_file/es5b02431_si_001.pdf

http://pubs.acs.org/doi/abs/10.1021/acs.est.5b04026

Andrew J. R. Watts, Mauricio A. Urbina, Shauna Corr, Ceri Lewis, and Tamara S. Galloway
Ingestion of Plastic Microfibers by the Crab Carcinus maenas and Its Effect on Food Consumption and Energy Balance
Environ. Sci. Technol., 2015, 49 (24), pp 14597–14604
DOI: 10.1021/acs.est.5b04026

Abstract
Microscopic plastic fragments (<5 mm) are a worldwide conservation issue, polluting both coastal and marine environments. Fibers are the most prominent plastic type reported in the guts of marine organisms, but their effects once ingested are unknown. This study investigated the fate of polypropylene rope microfibers (1–5 mm in length) ingested by the crab Carcinus maenas and the consequences for the crab’s energy budget. In chronic 4 week feeding studies, crabs that ingested food containing microfibers (0.3–1.0% plastic by weight) showed reduced food consumption (from 0.33 to 0.03 g d–1) and a significant reduction in energy available for growth (scope for growth) from 0.59 to −0.31 kJ crab d–1 in crabs fed with 1% plastic. The polypropylene microfibers were physically altered by their passage through the foregut and were excreted with a smaller overall size and length and amalgamated into distinctive balls. These results support of the emerging paradigm that a key biological impact of microplastic ingestion is a reduction in energy budgets for the affected marine biota. We also provide novel evidence of the biotransformations that can affect the plastics themselves following ingestion and excretion.

http://www.globalgarbage.org.br/mailinglist/5b04026.pdf

http://pubs.acs.org/doi/suppl/10.1021/acs.est.5b04026

Supporting Information
Ingestion of Plastic Microfibers by the Crab Carcinus maenas and Its Effect on Food Consumption and Energy Balance

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.5b04026.

Figures SI.1 and SI.2 and Tables SI.1 and SI.2 (PDF)

http://pubs.acs.org/doi/suppl/10.1021/acs.est.5b04026/suppl_file/es5b04026_si_001.pdf

http://pubs.acs.org/doi/abs/10.1021/acs.est.5b04099

Matthew Cole and Tamara S. Galloway
Ingestion of Nanoplastics and Microplastics by Pacific Oyster Larvae
Environ. Sci. Technol., 2015, 49 (24), pp 14625–14632
DOI: 10.1021/acs.est.5b04099

Abstract
Plastic debris is a prolific contaminant effecting freshwater and marine ecosystems across the globe. Of growing environmental concern are “microplastics”and “nanoplastics” encompassing tiny particles of plastic derived from manufacturing and macroplastic fragmentation. Pelagic zooplankton are susceptible to consuming microplastics, however the threat posed to larvae of commercially important bivalves is currently unknown. We exposed Pacific oyster (Crassostrea gigas) larvae (3–24 d.p.f.) to polystyrene particles spanning 70 nm-20 μm in size, including plastics with differing surface properties, and tested the impact of microplastics on larval feeding and growth. The frequency and magnitude of plastic ingestion over 24 h varied by larval age and size of polystyrene particle (ANOVA, P < 0.01), and surface properties of the plastic, with aminated particles ingested and retained more frequently (ANOVA, P < 0.01). A strong, significant correlation between propensity for plastic consumption and plastic load per organism was identified (Spearmans, r = 0.95, P < 0.01). Exposure to 1 and 10 μm PS for up to 8 days had no significant effect on C. gigas feeding or growth at <100 microplastics mL–1. In conclusion, whil micro- and nanoplastics were readily ingested by oyster larvae, exposure to plastic concentrations exceeding those observed in the marine environment resulted in no measurable effects on the development or feeding capacity of the larvae over the duration of the study.

http://pubs.acs.org/doi/pdfplus/10.1021/acs.est.5b04099

http://pubs.acs.org/doi/pdf/10.1021/acs.est.5b04099

http://pubs.acs.org/doi/suppl/10.1021/acs.est.5b04099

Supporting Information
Ingestion of Nanoplastics and Microplastics by Pacific Oyster Larvae

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.5b04099.

Additional information as noted in the text (PDF)

http://pubs.acs.org/doi/suppl/10.1021/acs.est.5b04099/suppl_file/es5b04099_si_001.pdf

http://pubs.acs.org/doi/abs/10.1021/acs.est.5b03163

Dongqi Yang, Huahong Shi, Lan Li, Jiana Li, Khalida Jabeen, and Prabhu Kolandhasamy
Microplastic Pollution in Table Salts from China
Environ. Sci. Technol., 2015, 49 (22), pp 13622–13627
DOI: 10.1021/acs.est.5b03163

Abstract
Microplastics have been found in seas all over the world. We hypothesize that sea salts might contain microplastics, because they are directly supplied by seawater. To test our hypothesis, we collected 15 brands of sea salts, lake salts, and rock/well salts from supermarkets throughout China. The microplastics content was 550–681 particles/kg in sea salts, 43–364 particles/kg in lake salts, and 7–204 particles/kg in rock/well salts. In sea salts, fragments and fibers were the prevalent types of particles compared with pellets and sheets. Microplastics measuring less than 200 μm represented the majority of the particles, accounting for 55% of the total microplastics, and the most common microplastics were polyethylene terephthalate, followed by polyethylene and cellophane in sea salts. The abundance of microplastics in sea salts was significantly higher than that in lake salts and rock/well salts. This result indicates that sea products, such as sea salts, are contaminated by microplastics. To the best of our knowledge, this is the first report on microplastic pollution in abiotic sea products.

http://www.globalgarbage.org.br/mailinglist/5b03163.pdf

http://pubs.acs.org/doi/suppl/10.1021/acs.est.5b03163

Supporting Information
Microplastic Pollution in Table Salts from China

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.5b03163.

Figure S1, sources of table salts tested in this study; Figure S2, spectra of the 15 packages of table salts; Table S1, eight nonplastic particles identified with micro-FT-IR (PDF)

http://pubs.acs.org/doi/suppl/10.1021/acs.est.5b03163/suppl_file/es5b03163_si_001.pdf

***

To be removed from the Mailing List, send an email to MailingList@globalgarbage.org with the subject REMOVE.

To send information to be divulged on the Mailing List, send an email to MailingList@globalgarbage.org with the subject NEWS.

To add some colleague to the Mailing List, send an email to MailingList@globalgarbage.org with the subject ADD.

To change the email address registered in the Mailing List, send an email to MailingList@globalgarbage.org with the subject CHANGE.

https://www.facebook.com/GlobalGarbage

https://twitter.com/GlobalGarbage

Sara Sá, Jorge Bastos-Santos, Hélder Araújo, Marisa Ferreira, Virginia Duro, Flávia Alves, Bruno Panta-Ferreira, Lídia Nicolau, Catarina Eira, José Vingada, Spatial distribution of floating marine debris in offshore continental Portuguese waters, Marine Pollution Bulletin, Available online 15 January 2016, ISSN 0025-326X, http://dx.doi.org/10.1016/j.marpolbul.2016.01.011.
(http://www.sciencedirect.com/science/article/pii/S0025326X1630011X)
Abstract: This study presents data on abundance and density of macro-floating marine debris (FMD), including their composition, spatial distribution and potential sources off continental Portugal. FMD were assessed by shipboard visual surveys covering ± 252,833 km2 until the 220 nm limit. The FMD average density was 2.98 items/km2 and abundance amounted to 752,740 items. Unidentified plastics constitute the major bulk of FMD (density = 0.46 items/km2; abundance = 117,390 items), followed by styrofoam, derelict or lost materials from fisheries, paper/cardboard and wood material. The North sector of the area presents higher FMD diversity and abundances, probably as a result of the high number of navigation corridors and fisheries operating in that sector. Most FMD originate from local sources, namely discharges from vessels and derelict material from fisheries. Considering the identifiable items, cables and fishing lines were the only fishing related items among the top ten FMD items in Portuguese offshore waters.
Keywords: Floating marine debris; Density estimate; Distance sampling; Plastics; Portugal

http://www.globalgarbage.org.br/mailinglist/S0025326X1630011X_In_Press_Corrected_Proof.pdf

Note to users:
Corrected proofs are Articles in Press that contain the authors’ corrections. Final citation details, e.g., volume and/or issue number, publication year and page numbers, still need to be added and the text might change before final publication.

Although corrected proofs do not have all bibliographic details available yet, they can already be cited using the year of online publication and the DOI , as follows: author(s), article title, Publication (year), DOI. Please consult the journal’s reference style for the exact appearance of these elements, abbreviation of journal names and use of punctuation.

When the final article is assigned to volumes/issues of the Publication, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues of the Publication. The date the article was first made available online will be carried over.

Cánovas-Molina Almudena, Monica Montefalcone, Giorgio Bavestrello, Angelo Cau, Carlo Nike Bianchi, Carla Morri, Simonepietro Canese, Marzia Bo, A new ecological index for the status of mesophotic megabenthic assemblages in the mediterranean based on ROV photography and video footage, Continental Shelf Research, Available online 15 January 2016, ISSN 0278-4343, http://dx.doi.org/10.1016/j.csr.2016.01.008.
(http://www.sciencedirect.com/science/article/pii/S0278434316300085)
Abstract: A new index of ecological status, named Mesophotic Assemblages Ecological Status (MAES) index, was elaborated on the basis of ROV (Remotely Operated Vehicle) photography and video footage in order to assess the status of mesophotic megabenthic assemblages from hard bottom. The index was tested on seven sites located between 50 and 150 m depth in the Ligurian and Tyrrhenian seas (western Mediterranean Sea). The MAES index considers three main parameters: i) the community structure (number of megabenthic taxa, percent biotic cover in the basal layer, density of erect species); ii) the condition of the dominant erect species (average height, percent of colonies with epibiosis/necrosis); iii) the visible human impact (density of marine litter, including lost fishing gears). Two versions of the index have been elaborated, the complete version (MAES) and the quick version (q-MAES), which showed comparable results, therefore suggesting the possibility of fastening assessment times. The sensitivity of the MAES index was correlated with the putative human pressure acting upon the site (semi-quantitatively assessed considering fishing effort and coastal urbanisation). A standard working protocol related to the evaluation of the MAES index is here proposed with the intent to create an effective monitoring tool for the assessment of the ecological status of mesophotic assemblages on a large scale, as required by the EU Marine Strategy Framework Directive. MAES index will enhance the comprehension of the dynamics of mesophotic Mediterranean megabenthic assemblages with respect to human pressures and will also provide marine scientists and managers with a valuable tool specifically designed for the conservation of such vulnerable marine ecosystems.
Keywords: Mesophotic assemblages; Ecological status; Mediterranean Sea; MAES index; ROV

http://www.globalgarbage.org.br/mailinglist/S0278434316300085_In_Press_Accepted_Manuscript.pdf

Note to users:
Accepted manuscripts are Articles in Press that have been peer reviewed and accepted for publication by the Editorial Board of this publication. They have not yet been copy edited and/or formatted in the publication house style, and may not yet have the full ScienceDirect functionality, e.g., supplementary files may still need to be added, links to references may not resolve yet etc. The text could still change before final publication.

Although accepted manuscripts do not have all bibliographic details available yet, they can already be cited using the year of online publication and the DOI, as follows: author(s), article title, Publication (year), DOI. Please consult the journal’s reference style for the exact appearance of these elements, abbreviation of journal names and use of punctuation.

When the final article is assigned to volumes/issues of the Publication, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues of the Publication. The date the article was first made available online will be carried over.

Tomoya Kataoka, Hirofumi Hinata, Shigeru Kato, Backwash process of marine macroplastics from a beach by nearshore currents around a submerged breakwater, Marine Pollution Bulletin, Volume 101, Issue 2, 30 December 2015, Pages 539-548, ISSN 0025-326X,http://dx.doi.org/10.1016/j.marpolbul.2015.10.060.
(http://www.sciencedirect.com/science/article/pii/S0025326X15301387)
Abstract: A key factor for determining the residence time of macroplastics on a beach is the process by which the plastics are backwashed offshore (backwash process). Here, we deduced the backwash process of plastic fishing floats on Wadahama Beach based on the analysis of two-year mark-recapture experiments as well as nearshore current structures revealed by sequential images taken by za webcam installed at the edge of a cliff behind the beach. The analysis results revealed the occurrence of a combination of offshore currents and convergence of alongshore currents in the surf zone in storm events around a submerged breakwater off the northern part of the beach, where 48% of the backwashed floats were last found. We conclude that the majority of the floats on the beach were transported alongshore and tended to concentrate in the convergence zone, from where they were backwashed offshore by the nearshore currents generated in the events.
Keywords: Marine macroplastics; Residence time; Submerged breakwater; Nearshore current; Mark-recapture experiment

http://www.globalgarbage.org.br/mailinglist/S0025326X15301387.pdf

Catharina Pieper, Maria A. Ventura, Ana Martins, Regina T. Cunha, Beach debris in the Azores (NE Atlantic): Faial Island as a first case study, Marine Pollution Bulletin, Volume 101, Issue 2, 30 December 2015, Pages 575-582, ISSN 0025-326X, http://dx.doi.org/10.1016/j.marpolbul.2015.10.056.
(http://www.sciencedirect.com/science/article/pii/S0025326X15301272)
Abstract: Marine debris is widely recognised as a global environmental problem. This study assesses density, type, and temporal trends of marine debris in two sandy beaches of Faial Island (Azores, NE-Atlantic). During seven months (six days per month) the beaches were surveyed by performing 10 random transects at each site. Recorded items within the range 2–30 cm were organised into seven categories. Densities of total debris varied from 0 to 1.940 items m− 2, with plastics dominating both areas. Both beaches, presented the highest debris abundance in February, most probably related to prevailing winds and swell. Location and/or time of year also seemed to influence the type of debris present. These findings provide new insights into debris accumulation rates in the Azores, where no previous studies were made. It also confirms the global trend of increased plastics accumulation on shorelines, highlighting the need for further research in remote islands.
Keywords: Marine pollution; Solid waste; Plastics; Remote islands; Azores Archipelago

http://www.globalgarbage.org.br/mailinglist/S0025326X15301272.pdf

Atsuhiko Isobe, Keiichi Uchida, Tadashi Tokai, Shinsuke Iwasaki, East Asian seas: A hot spot of pelagic microplastics, Marine Pollution Bulletin, Volume 101, Issue 2, 30 December 2015, Pages 618-623, ISSN 0025-326X, http://dx.doi.org/10.1016/j.marpolbul.2015.10.042.
(http://www.sciencedirect.com/science/article/pii/S0025326X15301168)
Abstract: To investigate concentrations of pelagic micro- (< 5 mm in size) and mesoplastics (> 5 mm) in the East Asian seas around Japan, field surveys using two vessels were conducted concurrently in summer 2014. The total particle count (pieces km− 2) was computed based on observed concentrations (pieces m− 3) of small plastic fragments (both micro- and mesoplastics) collected using neuston nets. The total particle count of microplastics within the study area was 1,720,000 pieces km− 2, 16 times greater than in the North Pacific and 27 times greater than in the world oceans. The proportion of mesoplastics increased upstream of the northeastward ocean currents, such that the small plastic fragments collected in the present surveys were considered to have originated in the Yellow Sea and East China Sea southwest of the study area.
Keywords: Microplastics; Mesoplastics; Field survey; Total particle count

http://www.sciencedirect.com/science/article/pii/S0025326X15301168/pdfft?md5=75e455f3bf340467949184559a7456b8&pid=1-s2.0-S0025326X15301168-main.pdf

Robson Henrique de Carvalho, Pedro Dutra Lacerda, Sarah da Silva Mendes, Bruno Corrêa Barbosa, Mariana Paschoalini, Fabio Prezoto, Bernadete Maria de Sousa, Marine debris ingestion by sea turtles (Testudines) on the Brazilian coast: an underestimated threat?, Marine Pollution Bulletin, Volume 101, Issue 2, 30 December 2015, Pages 746-749, ISSN 0025-326X, http://dx.doi.org/10.1016/j.marpolbul.2015.10.002.
(http://www.sciencedirect.com/science/article/pii/S0025326X1530076X)
Abstract: Assessment of marine debris ingestion by sea turtles is important, especially to ensure their survival. From January to December 2011, 23 specimens of five species of sea turtles were found dead or dying after being rehabilitated, along the coast of the municipality of Rio de Janeiro, Brazil. To detect the presence of marine debris in the digestive tract of these turtles, we conducted a postmortem examination from the esophagus until the distal portion of the large intestine for each specimen. Of the total number of turtles, 39% had ingested marine debris such as soft plastic, hard plastic, metal, polyethylene terephthalate (PET) bottle caps, human hair, tampons, and latex condoms. Five of the seven sea turtles species are found along the Brazilian coast, where they feed and breed. A large number of animals are exposed to various kinds of threats, including debris ingestion.
Keywords: Plastic; Pollution; Waste; Rio de Janeiro; Chelonia mydas; Caretta caretta

http://www.globalgarbage.org.br/mailinglist/S0025326X1530076X.pdf

http://micro2016.sciencesconf.org/page/registration

ABSTRACT SUBMISSION AND CONFERENCE REGISTRATION

Abstract Submission Deadline: 31 March 2016

Prior to submitting abstracts and registering for the conference, attendees must create an account. To do this, go to “Create an Account” in the “My Space” menu.

Once your account is created, the menu links for “registration” and “submission” will become available. Then, follow the instructions on the corresponding pages to register for the conference and submit your presentation abstract online.

Attendees are invited to submit an abstract for an oral or poster presentation on the following MICRO 2016 topics:

* From macro- to microplastics: Weathering and fragmentation processes

* From source to sink: Occurrence and distribution of microplastics in fresh water bodies, coastal zones and the open ocean

* Impacts of microplastics on marine life

* Microplastics as vectors of biological and chemical contaminants

* Socioeconomic impacts of microplastics

* Citizen science, outreach, education and communication

* Solutions and next steps

Abstracts should be submitted in English and should be no more than 300 words long with 1 figure.

Please state your preference for an oral or poster presentation. The scientific committee reserves the right to ask that an oral presentation be changed to a poster or vice versa, to help ensure balanced thematic sessions.

After submitting your abstract, you will receive a confirmation e-mail.

All abstracts, both oral and poster, will be published in the book of abstracts.

If you would like to propose a side event, please directly contact the organizers: micro2016<AT>sciencesconf.org

Instructions for oral presentations:
Supporting material for all oral presentations must be given to the technical staff by 5 pm the day before the presentation, please use pdf format. Each oral presentation is limited to 15 minutes.

Instructions for posters:
A permanent poster exhibition will be displayed at the Cabildo de Lanzarote. Poster boards will be available for displaying your poster.  The size of the poster should not exceed 80 cm wide/110 cm high, so as to be compatible with the panels of the poster stands. If you have a particular request, please contact the organizers.

No Conference Registration Fee.

———- Forwarded message ———-
From: Johnny Gasperi <gasperi@u-pec.fr>
Date: 2016-01-05 11:06 GMT+01:00
Subject: Post-doc fellowship at the UPEC university (France)
To: “fabianobarretto@googlemail.com” <fabianobarretto@googlemail.com>
Cc: “XTERIEUR bruno.tassin” <bruno.tassin@enpc.fr>

Dear Fabiano,

First, I wish you my best wishes for 2016!

Can you please share this update using your mail list (MailingList@globalgarbage.org)
Many thanks,
Best regards,
Johnny

“Dear all,

Bruno Tassin and I are working on microplastics in Paris (France). Maybe some of you already know our works on the Seine River and the recent papers published (https://www.researchgate.net/profile/Johnny_Gasperi).

My university (Université Paris-Est – UPEC) offers an internal post-doc fellowship, which could start in September 2016 for one year. We would like to support any application dealing with microplastics to join our research group.

Eligibility
EU Member States or French candidate can apply. Any post-doc level researcher is eligible but he/she do not have resided or carried out his/her main activity in France for more than 12 months in the last three years. As this fellowship is coupled to the PRESTIGE post-doc program (which is a co-financing program), more details can be found on the eligibility criteria (http://www.campusfrance.org/en/prestige).

Application
A first application to the university is required. The deadline is February, 1st 2016. A pre-selection of candidate by the university will be made in March 2016. The pre-selected candidate will then apply to the PRESTIGE post-doc program. In case of acceptance, this could provide extra funds for research and living allowance. In case of not acceptance by the PRESTIGE program, the university would employ the candidate according to conventional living allowance.

Don’t hesitate to contact us for further information.

Best regards,

Johnny Gasperi (gasperi@u-pec.fr) and Bruno Tassin (tassin@enpc.fr)”

Johnny Gasperi
Maitre de conférence – HDR – LEESU
Faculté de Sciences et Technologie
Université Paris Est – Créteil
61 Avenue du Général De Gaulle
94010 Créteil cedex, France.
Tel : 01.45.17.16.21
Fax : 01.45.17.16.27
E-mail : gasperi@u-pec.fr

recycling rates down this year

…oh dear – NOT going to meet the 2020 targets and waste creation on the rise. It’s one hell of a mess!

CIWM notes the disappointing trend in recycling performance across councils in England, recently released by Defra in the Statistics on Waste Management by Local Authorities in England 2012/13 report. This trend has been evident and commented upon by CIWM over the last couple of years and Defra now admit that this rate of increase is insufficient to meet the 50% EU target by 2020.

CIWM sees this as a direct result of the increasing financial pressures on local government. These are examples of authorities either pulling back from the improvements to waste services (e.g. introducing food waste collection), curtailing existing services (e.g. charging for green waste collection) or reducing their communications programmes. Taken together, the net effect of these spending constraints is showing itself in this loss of momentum in household recycling improvement across England.

 

post

Wasting away – how much rubbish do we create?

Whats new in the bin – check back here for updated rubbish factoids.

“Discarding many human-made items, from plastic straws to nuclear waste to nail polish, rank as events at the same space-time scale as massive earthquakes and global climate change. Since the 1930′s, humans have been making geological garbage.”
read whole article

Plastic Stats

Nappies, tampons and wet wipes – dirty!

Nappies The liner or topsheet - made of the plastic polymer polypropylene - sits next to the baby's skin and ...
Read More

Disposing Of Plastic

In this post you can read about the many ways we dispose of plastic. Most plastics are made from oil ...
Read More

Reports & Statistics Index

Post Index Wasting Away - how much rubbish do we create globally Definitions You can find definitions, clarifications and explanations here ...
Read More

Food Waste

Almost 50% of the total amount of food thrown away in the UK comes from our homes. We throw away ...
Read More

Plastic Trash By Country

Statistics can be wobbly and there will be discrepancies between reports but even bearing that in mind it is obvious ...
Read More

Weee / Electronic Waste

 Between now and the end of 2020, WRAP estimates that electronic products purchased in the UK will total around 10 ...
Read More

Latest waste stats

A staggering eight million metric tones of  are discharged into the oceans each year from the world’s 192 coastal countries, according to an international study published in the journal Science in February, which was based on 2010 data.

Read more at: http://phys.org/news/2015-12-spanish-fishermen-sea-bounty-plastic.html#jCp

April 18, 2008 and the Ocean Conservancy released a report based on their beach cleanup efforts. On one day 380000 volunteers picked up six million pounds of rubbish data sheets ahowing rubbish break down by type location and source are available to download

Each year 400,000 tonnes of carpet waste is buried in UK landfill
*Based on the Carpet Recycling UK annual survey in 2013 which collected self-reported figures from carpet recyclers throughout the UK and an estimate of incineration of carpets by local authorities.

Carpets are made from natural and synthetic fibres, which still have a value once the carpet is no longer wanted; they can be used in a wide range of applications from sports surfaces to insulation.

Carpet Recycling UK is a not for profit membership association working to increase the recycling of carpet waste across the UK

The 2.5 billion synthetic cups thrown away in Britain every year are made from a mixture of materials which prevents them from being recycled alongside paper and cardboard. Daily Mail

A report conducted jointly by the Alliance for Environmental Innovation and Starbucks found that 1.9 billion cups were used by Starbucks in 2000.[5] In 2006, Starbucks reported that this figure had grown to 2.3 billion cups for use at their stores.[6]

http://sustainabilityissexy.com/facts.ht…

At the University of Washington, a college of roughly 42 thousand students, the Housing and Food Services Department estimates that 5000 paper coffee cups are thrown away every school day.
http://sustainabilityissexy.com/facts.ht…

post

Some plastic facts

Put together by Ecoforce

  • All types of plastic are recyclable.
  • Advantages of recycling plastic:
    – Conservation of non-renewable fossil fuel
    – Plastic production uses 8% of the world’s oil production, 4% as feedstock and 4% during manufacture.
    – Reduced consumption of energy.
    – Reduced amounts of solid waste going to landfill.
    – Reduced emissions of carbon-dioxide (CO2), nitrogen-oxide (NO) and sulphur-dioxide (SO2).
  • The world’s annual consumption of plastic materials has increased from around 5 million tonnes in the 1950s to nearly 100 million tonnes today. (WRAP)
  • One tonne of plastics is equivalent to 20,000 two litre drinks bottles or 120,000 carrier bags (LINPAC )
  • The amount of plastic waste generated annually in the UK is estimated to be nearly 5 million tonnes. (WRAP)
  • The UK currently recycles approximately 24% of plastic while a European country like Germany recycles 44% (British Plastic Federation)
  • Plastic makes up 9% of average household waste. (WRAP)
  • All branches of Tesco and Sainsbury’s offer a plastic bag recycling service
  • A report on the production of carrier bags made from recycled rather than virgin polythene concluded that the use of recycled plastic resulted in the following environmental benefits:
    – reduction of energy consumption by two-thirds
    – production of only a third of the sulphur dioxide and half of the nitrous oxide
    – reduction of water usage by nearly 90%
    – reduction of carbon dioxide generation by two-and-a-half times
  • 1.8 tonnes of oil are saved for every tonne of recycled polythene produced
  • Over 50%% of litter found on UK beaches in 2008 was plastic litter, an increase of more than 120% since 1994.
  • 75% of post consumer plastic waste is sent to landfill
  • Around 45 billion individual items, approximately one million tonnes of domestic plastics, are disposed of every year in the UK (WRAP)
  • Every year an estimated 4.5 billion plastic bags are given away by UK supermarkets.
  • Incinerating 10,000 tons of waste creates 1 job, landfilling the same amount creates 6 jobs while recycling the same 10,000 tons creates 36 jobs.
  • Plastic bags and other plastic rubbish thrown into the ocean kill as many as 1,000,000 sea creatures every year.
  • Plastics can take up to 400 years to break down in a landfill.
  • If you lined up all the polystyrene foam cups made in just 1 day they would circle the earth.
  • In one year along, approximately 684,000 tonnes of CO2 emissions were saved by recycling the UK’s plastics, the equivalent of taking 216,000 cars off the road! (BPF).
  • There are about 1,000 milk jugs and other bottles in a recycled plastic park bench. (RECOUP)
  • Recycling just one plastic bottle saves enough energy to power a 60W light bulb for six hours (Recoup)

 

post

Some U.K. Recycling Stats

Here are a few statistic to whet your appetite. There are plenty more throughout the blog.

Our previous work had suggested that bottled water production was an energy-intensive process, but we were surprised to see that the energy equivalent of nearly 17 million barrels of oil are required to produce the PET bottles alone,” Cooley told PhysOrg.com.

From Container Recycling

Around 899 thousand tons of PET plastic bottles were recycled nationwide in 2013, but more than two times as much PET was wasted: 2 million tons.*

*Notes/Calculations:

Recycled: (1,798 million pounds/2,000)*1,000,000 = 899,000 tons
Total: 5,764 million pounds produced
Wasted: (3,966 million pounds*1,000,000)/2,000 = 1,983,000 tons

Plastic Sats

According to the United Kingdom (UK) Government, in 2008 the total environmental cost of waste sent to landfill and incinerators within the United Kingdom (UK)was £211 million and £125 million, respectively. ( the big green book)

Daily Mail 

In September last year, England’s household recycling rate stood at 43.9 per cent – a decline from 44.1 per cent in 2012.

And according to Pledge4Plastics, the average UK home uses 440 plastic bottles a year, but recycles just 250 of them.

One in five people admit they don’t recycle fizzy drink or milk bottles, while a quarter don’t put juice or water bottles in the correct bin.

Some 5 billion plastic bottles were sent to UK landfill sites last year.

From Gov.UK 2011

In 2011 the UK disposed of an estimated 10.8 million tonnes of packaging waste, of which around 67% was recovered. In 1998 only 27% of packaging waste was recovered.

2011 recovery and recycling achievement data

Total packaging waste arising (tonnes) Total recovered/recyled (tonnes) EU Target (%) Recovery/recycling rate (%)
Paper 3,817,860 3,232,461 60 84.8
Paper composting 6,727
Glass 2,739,989 1,751,852 60 63.9
Aluminium 160,877 73,683 45.8
Steel 648,740 373,714 57.6
Metal 447,397 50 55.3
Plastic 2,515,809 609,910 22.5 24.2
Wood composting 442
Wood 1,023,939 600,276 15 58.7
Other 22,443
Total recycling 6,649,065 55 60.8
Energy from Waste 685,612
Total Recovery 10,929,657 6,641,896 60.0 67.1

More

Read more about

 plastic recycling

Staistics

Reports

 

post

how much energy goes into plastic ?

Interesting stuff from Low Tech Magazine

How much energy does it take (on average) to produce 1 kilogram of the following materials?

•Wood (from standing timber): 3-7MJ (830 to 1,950 watt-hours).
•Steel (from recycled steel): 6-15MJ (1,665 to 4,170 watt-hours).
•Aluminum (from 100 % recycled aluminum): 11.35-17MJ (3,150 to 4,750 watt-hours)
•Iron (from iron ore): 20-25MJ (5,550 to 6,950 watt-hours)
•Glass (from sand, etcetera): 18-35MJ (5,000 to 9,700 watt-hours)
•Steel (from iron): 20-50MJ (5,550 to 13,900 watt-hours)
•Paper (from standing timber): 25-50MJ (6,950 to 13,900 watt-hours)
•Plastics (from crude oil): 62-108MJ (17,200 to 31,950 watt-hours)
•Copper (from sulfide ore): 60-125MJ (16,600 to 34,700 watt-hours)
•Aluminum (from a typical mix of 80% virgin and 20% recycled aluminum): 219 MJ (60,800 watt-hours)
•Silicon (from silica): 230-235MJ (63,900 to 65,300 watt-hours)
•Nickel (from ore concentrate): 230-270MJ (63,900 to 75,000 watt-hours)
•Aluminum (from bauxite): 227-342MJ (63,000 to 95,000 watt-hours)
•Titanium (from ore concentrate): 900-940MJ (250,000 to 261,000 watt-hours)
•Electronic grade silicon (CVD process): 7,590-7,755MJ (2,108,700 to 2,154,900 watt-hours).

Note: 1 megajoule (MJ) = 277.77 watt-hour (Wh)

 

post

squirrels eating plastic

What squirrels should be eating … and what they are eating. Thanks to  Harry Shuldman for this great picture …..

squirrel in Wash. Sq. Park forcing a wadded up plastic bag down its throat

In his own words… “squirrel in Wash. Sq. Park forcing a wadded up plastic bag down its throat. I tried to shoo him away to stop him from eating the bag, but he was determined to finish it. This is why you need to throw your trash in the trash!”

Of course, as we would say, boycott the filthy stuff.

Every year plastic is implicated in the death and crippling of animals worldwide

Check out the Flickr Plastic Is Rubbish photo pool.. for some really fantastic pictures of plastic polltuion.

More dirty pictures can be found here –  plastic pollution picture index g

Plastic Aware Projects Archive

Campus to track plastic use for new project Here’s an interesting report from the Daily Californian

English: Campus of the UC Berkeley in Berkeley...

English: Campus of the UC Berkeley in Berkeley, California, United States (Photo credit: Wikipedia)

Two weeks ago, the campus ( UC Berkeley)  secured funding for a zero-waste research center to study where waste on campus is coming from and what can be done to reduce it. The first action the center will take is adoption of the Plastic Disclosure Project, a worldwide initiative asking the business world to report and assess how much plastic waste it is producing.

The project was founded last year by UC Berkeley alumnus Doug Woodring, who witnessed the effects of plastic in local waters and at the North Pacific Gyre, an aggregate of plastic floating in the middle of the Pacific Ocean. Woodring said the project is looking to work with businesses “to hold a mirror up to themselves” and address how plastic production and waste effect plastic pollution in oceans. UC Berkeley will be the first campus in the world to join the project.

Read the rest of the article here

post

Down The Drain…..

Where does all this plastic trash come from? Well dirty litter droppers get most of the blame and they are responsible for much of it – except of course when they aren’t.

These men were trying to transfer some polystyrene peanuts, a packaging material, from one box to another.A strong wind blew up and peanuts blew everywhere.

Here they are bouncing down the street……..

along the kerb….

up to the grid….

down the storm drain.

This being Istanbul, it wont be long before they are washed out into the Bosporus and so out to sea …

That’s one way plastic escapes out into the environment. Being non-biodegradable, once out there it will be around for some time looking ugly, working its way into the food chain, releasing poisons and posing a threat to wild life.

Plastic trash has been implicated in the deaths of all these animals

Polystyrene is just gross – you can find out more here …..

 

post

plastic kills plankton

Microplastics may be killing teeny, tiny beasties. Particles of plastic of 20 microns in diameter (a width thinner than a human hair) called micro plastics and are being found in the oceans in ever-increasing quantities.

College of the Atlantic senior Marina Garland has been studying the problem.

“According to Garland, lab studies have been conducted indicating that aquatic microorganisms such as plankton can also mistake micro plastic particles for food and subsequently be killed by the adverse effects of the particle on the organism’s digestive tract. Additionally, said Garland, various toxins are known to cling to plastic particles through a process known as adsorption. As a result, plastic flotsam collected from oceans is often a concentrated source for such toxic chemicals as the pesticide DDT. Microorganisms that ingest the toxic plastic particles are often consumed by larger organisms, which then become toxic themselves. The concentration of toxicity in marine organisms continues to increase at the higher levels of the food chain through a process known as biomagnification.”

You can see her presentation here

Find out more about micro plastics here

Image of plankton from Pinterest

 

 

Chris Woodford talks to PIR….

This month we are upping the bar with an article that’s well written  and wildly informative. Yes we have a guest post……

While trawling through the internet I stumbled across the fantastic website www.explainthatstuff.com written by Chris Woodford. It is all more than good but there was an article on plastic so pleasing that I had to ask if I could reproduce it. Didn’t I just fall off my chair with excitement when he offered to write something for the blog? So I thought I would ask all the questions that troubled me about plastic and see what he thought.

But before we begin… let me introduce the man:

Chris Woodford is a British science writer. He has  an MA in Natural Sciences from Cambridge University and  specialized in physics (he  studied at the Cavendish Laboratory) and experimental psychology. Other skills include chemistry, crystallography, materials science, and math. He had his first magazine article published  in 1980  and he went on to write, amongst  others, the( best-selling), how-it-works books

 Cool Stuff 2.0 (The Gadget Book), and Cool Stuff Exploded (all published worldwide by Dorling Kindersley/DK).
Now onto the questions and the first seems kind of easy but I had never really considered it before the boycott.

 

What is plastic anyway?

 The first thing to note is there’s no such thing as “plastic”; it’s not one thing, it’s many. Plastics are many different kinds of synthetic chemicals. What they have in common is that they’re polymers. They’re mostly made of carbon and hydrogen atoms linked into basic building blocks (molecules), which then repeat themselves over and over again. That’s what a polymer is: a molecule that repeats itself. A polymer looks like a coal train made of dozens of identical trucks all joined together, often in long chains. Each identical truck is one molecule and it’s joined to similar trucks on either side.

Is there anything remotely good about plastics?

Absolutely! The clue’s in the name, really. Plastic means “nasty stuff you can’t get rid of”, but it also means flexible–and that’s the good thing about plastics. They can do all kinds of useful things for us. From the moment you’re jolted awake by a plastic alarm clock, to the moment you brush your teeth with a nylon toothbrush and get back in bed again, plastic fills your every waking moment. I’m wearing a polyester fleece right now made from old plastic bottles, typing on a plastic computer keyboard, listening to music through plastic headphones and thinking occasionally about the dirty breakfast dishes sitting in the plastic washing-up bowl.

So what’s the downside?

Everything that’s good about plastic has a downside. There are dozens of different kinds of plastics, which is great if you’re a product manufacturer and you need to find something that does a very specific job. You use quite different plastics to make water bottles and milk bottles, for example, and plastic bags are made from something different again. That’s not so good if you’re a local council with the job of collecting plastics and trying to recycle them, because they pretty much all have to be recycled in different ways. Plastics are very cheap, which means we can use them for virtually anything. But the drawback there is that we now rely far too much on disposable things that benefit no-one except the people who make and sell them. And because plastics are essentially synthetic chemicals–ones we’ve dreamed up in laboratories–there aren’t really natural mechanisms that break them down. Animals and insects don’t eat plastics. Those long chains of molecules just sit there. And they go on sitting there–potentially for hundreds of years.

Hundreds of years?!

Hundreds of years! A plastic bottle can take 500 years to break down. That’s not a timescale we can readily appreciate. A human might live 80 years, so a plastic bottle lives six times longer. Or we could think of it in a completely different way. Imagine you come across an old plastic bottle someone’s thrown into your front garden. Now if plastic lasts 500 years, that bottle could have been thrown there by King Henry VIII

Henry VIII of England, who devised the Statute...

Image via Wikipedia

on his way back from the pub! It could be older than everything in your street–all the trees, the houses, the cars, the people… everything. Now of course that’s not actually true because plastics weren’t invented in 1511. But roll the clock forward five hundred years from now, to 2511, and it’s quite possible that the person living in what’s now your house will dig up the garden and find bits of plastic you left behind. Or that a 25th-century Tony Robinson will make archaeology programmes on TV about sifting through all the random bits of plastic in a 21st-century landfill.

But  we’re recycling so much more plastic now?

Or are we? Over 90 percent of the plastic stuff we buy still ends up in a landfill. That’s bad for all kinds of reasons. Landfill is just a more polite word for litter; it’s litter on a grand scale! Not only that, it’s such a waste. Most plastic comes from petroleum–and we know oil is going to run out sooner or later. Apparently, something like 200,000 barrels of oil a day are used to make plastic for packaging, just in the USA–a huge waste, and most of it going to landfill in a matter of days or weeks. There’s also the question of energy. It takes far more energy to make disposable plastic things than it does to use the same things over and over again. Recycled plastic is much better than brand new plastic: it saves about two thirds of the energy used in manufacturing. But, quite frankly, recycling is only a little bit better than throwing things away. It’s far better not to use plastic at all than to recycle it. It’s much better, for example, to have a reuseable aluminium water bottle that you fill up from the tap each day than to buy plastic bottles of water and then very conscientiously recycle them. Where do they go after you’ve recycled them? It takes a lot of energy to transport them, melt them down, and turn them into new plastic products that may (or may not) be recycled. Far better to eliminate the plastic completely if you can.

Do plastics have to be so bad for the environment?

Absolutely not. The thing to remember about plastics is that humans created them. Chemists in laboratories engineered pretty much all these polymers and designed them to do very specific jobs. There’s nothing random or accidental about it, so why should there be anything random or accidental about how we dispose of them? In other words, there’s no reason why chemists can’t engineer plastics that can be disposed of more easily. In fact, they’re already doing just that. We’ve had biodegradable plastics for several decades and now the industry buzzword is “bioplastics”: plastics made from more natural ingredients that break down much faster when we dispose of them.

That sounds brilliant! How do they work?

A really good example is the kind of packaging you now find on many sandwich containers. Go back ten or twenty years and take-away sandwiches always came in plastic triangles that you simply threw away. Who knows what happened to them? Well most of them–hundreds of millions of them–are sitting in landfills under our feet. What a waste! And what a disgrace! Buy yourself some sandwiches today and it’s a very different story. You’re probably going to get a cardboard container (which is easy to compost or recycle) with a thin window made of what looks like ordinary, thin plastic. But it’s more likely to be a bioplastic based on corn starch (the stuff you put in sauces to thicken them up). The bioplastic has these little chunks of cornstarch embedded in it. As it picks up moisture, the starch swells up (just like your sauce thickens) and cracks the plastic into tiny fragments that break down more quickly–typically in just a few months. Things like greetings cards are now being packed in the same stuff. Other bioplastics (ones that don’t use cornstarch) are designed to be broken down by sunlight, water, or high temperatures.

Does bioplastics have any drawbacks?

It would be great if all the plastic we couldn’t avoid using was either reused in some way or recycled. Realistically, though, that’s never going to happen: most bioplastic is going to end up in a landfill, just like ordinary plastic. So we still need to think about that very carefully. Some bioplastics disappear very cleanly in landfills. Because they’re made from plants, they absorbed carbon dioxide when they grew in the first place and they release that carbon dioxide again when they break down–so effectively, ignoring the energy used in manufacturing, they’re carbon neutral: they don’t add to global warming. Other bioplastics break down and release methane, which is a really powerful greenhouse gas (much worse than carbon dioxide). That’s a serious issue. Some also leave a toxic residue in the landfill, which could cause water pollution or soil contamination. Another problem is that bioplastics can’t be recycled the same way as ordinary plastics so if they all get mixed in together in a recycling container, you can end up with a huge pile of unprocessable waste that has to go to a landfill. There are other issues too. Some bioplastics are described as “compostable”, but they only compost in the kind of high-temperature digesters operated by councils, not on your average, low-temperature, home compost heap.

So not really a complete solution?

Definitely not. You have to go back to what we were saying right at the beginning–about how many different kinds of plastic we use and in how many different ways. You can’t really make a plastic washing up bowl from bioplastic–it would slowly disintegrate before your eyes! But what else are you going to make it out of? And if you accept that it’s not something you’re going to keep forever, what happens to it when you throw it away? Ditto with a toothbrush: it’s something you have to throw away and replace (if you want to keep your teeth).

What’s the answer to that?

The way to look at these things is always reduce, reuse, recycle–in that order. So you first have to ask do I really need a plastic washing-up bowl? Can I wash up in the sink, which is what people always used to do until about the 1960s and 1970s. If I have to throw it out, can I do anything useful with it? Can I use it in the garden to collect weeds, perhaps? Can I clean it up and use it for storage? If I really have to get rid of it, can I possibly recycle it?

But for disposable packaging…?

Well, there bioplastics definitely have a big part to play. If you bear in mind that plastic bags have an average useful life of 12 minutes, but live on in landfills for 500 years, you can see there’s a real value in having plastic food packaging that disappears very quickly. Especially for things like sweets and crisps, where there’s a high chance that any packaging is going to end up as litter. But bioplastics aren’t the only solution–and they may not even be the best one. Another option is to turn the problem back on the manufacturers. The main reason we have plastic packaging is to extend the shelf life of foods so that big corporations can make more money. Okay, fine, so let them accept some of the responsibility for the “plastic monster” they’ve created. Eco groups like Surfers Against Sewage have been campaigning on this for some time, encouraging people to post rubbish they find on beaches (80% of it is plastic, incidentally) back to the companies who produced it. (They call it “Return to Offender”!) Packaging is relatively easy to trace back to the people who made it–it’s stamped with their name. So how about councils being able to fine manufacturers for litter as well as the people who drop it? We’re hearing now that the cost of litter collection in the UK is soon going to hit a billion pounds a year. Let the people who profit from packaging pay some of the costs. Then they’d put a bit more effort into educating people about disposing of waste, using less packaging, and developing more eco-friendly plastics.

What’s the one thing people should take away from all this?

King Henry VIII! Remember how long plastic lasts and what it costs the environment (in resources, energy, and litter). Use as little of it as you can. When you get rid of plastic things, try to give them another life first (use your old toothbrush for cleaning your bike, or whatever) and recycle them if you can’t. There’s no excuse for plastic litter–and throwing away plastic is almost as bad

Find out more about related matters on

And loads of other interesting stuff at www.explainthatstuff..com

You can buy Chris’s books from